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Preface

Leonhard Euler (1707-1783) was a universal genius and one of the most
brilliant intellects of all time. He made numerous major contributions to
eighteenth century pure and applied mathematics, solid and fluid mechan-
ics, astronomy, physics, ballistics, celestial mechanics and optics. Among
the greatest mathematical and physical scientists of all time including New-
ton, Leibniz, Gauss, Riemann, Hilbert, Poincaré, and Einstein, Euler’s
monumental contributions are generally considered unique and fundamental
and have shaped much of the modern mathematical sciences. The Eulerian
universal view is the dominant influence in the fields of physics, astronomy,
continuum mechanics, natural philosophy, pure and applied mathematics.
He published almost 900 original research papers, memoirs, and 25 books
and treatises on mathematical and physical sciences. Even without the pub-
lication of his collected works, Leonhardi Fuleri Opera Ommnia, still in the
process of being edited by the Swiss Academy of Sciences, his voluminous
published works clearly demonstrate his amazing creativity, achievements
and contributions to a wide variety of subjects in mathematical, physical,
and engineering sciences. He also made contributions to other disciplines
including geography, chemistry, cartography, music, history and philosophy
of science.

The following quotations give some idea of the special veneration and
affection in which he was held by his contemporaries and successors. P.
S. Laplace wrote: “Read Euler, read Euler, he is the master of us all.”
It is a delight to quote Karl Friedrich Gauss: “... the study of Euler’s
works will remain the best school for different fields of mathematics and
nothing else can replace it.” On the other hand, the great twentieth century
mathematician André Weil said: “No mathematician ever attained such a
position of undisputed leadership in all branches of mathematics, pure and
applied, as Euler did for the best part of the eighteenth century.”

vii
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The tercentenary of Euler’s birth has recently been celebrated with glo-
rious success to pay a special tribute to this legendary mathematical and
physical scientist of the eighteenth century. There is absolutely no doubt
that Euler laid the solid foundations on which his contemporaries and suc-
cessors of the last three centuries were able to build new ideas, results, the-
orems and proofs. His extraordinary genius created a simple language and
style, unique symbols, and notations in which mathematical and physical
sciences have developed ever since. His name is also synoymously associ-
ated with a large number of results, terms, equations, theorems, and proofs
in mathematics and science.

Throughout his extensive research contributions and lucid writings, Eu-
ler was always influenced by his own thought as follows: “Since a general
solution must be judged impossible from want of analysis, we must be con-
tent with the knowledge of some special cases, and that all the more, since
the development of various cases seems to be the only way to bringing us at
last to a more perfect knowledge.” In addition, Euler’s quest of new knowl-
edge was simple and direct. His standards of mathematical rigor were far
more primitive than those of today, but as Richard Feynman (1918-1988),
an American genius, so cogently observed in the twentieth century: “.
However, the emphasis should be somewhat more on how to do the math-
ematics quickly and easily, and what formulas are true, rather than the
mathematician’s interest in methods of rigorous proof.” FEuler has often
been criticized for his lack of mathematical clarity, elegance and rigor. In-
tuition played an important role in his discoveries. He was always interested
in creating a set of new ideas and results in the most diverse fields of math-
ematical and physical sciences. So, it is perhaps true that Euler’s work
met all requirements for rigor in his time. He was often satisfied when his
intuition gave him full confidence that the proof of results could be carried
through to complete mathematical rigor and then assigned the completion
of the proof to others.

In pure mathematics, his major research fields included differential and
integral calculus, infinite series and products, algebra, number theory, ge-
ometry of curves and surfaces, topology, graph theory, ordinary and par-
tial differential equations, calculus of variations, special functions, elliptic
functions, and integrals. In applied mathematics, he published papers on
the mechanics of particles and of solid bodies, elasticity and fluid mechan-
ics, optics, astronomy, lunar, and planetary motion. He also wrote many
textbooks on mechanics, mathematical analysis, algebra, analytic geome-
try, differential geometry, and the calculus of variations. In mathematical
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physics, Euler discovered the fundamental partial differential equations for
the motion of inviscid incompressible and compressible fluid flows, and ap-
plied them to the blood flow in the human body. In the theory of heat,
he closely followed Daniel Bernoulli to describe heat as an oscillation of
molecules. He mathematically investigated the propagation of sound waves
and obtained many original results on refraction and dispersion of light.
Euler was one of the few scientists of the eighteenth century to favor the
wave theory as opposed to the particle theory of light. Euler also made
remarkable contributions to applied mathematics and engineering science.
For example, he studied the bending of beams and calculated the critical
load of columns. He described the perturbation effect of celestial bodies
on the orbits of planets. He obtained the paths of projectiles in a resisting
medium. He worked on the theory of tides and currents. His study on the
design of ships helped navigation. His three volumes on achromatic optical
instruments contributed to the design of microscopes and telescopes.
Euler maintained extensive contacts and correspondence with many of
the most eminent mathematical scientists of the time including Christian
Goldbach, A. C. Clairaut, Jean d’Alembert, Joseph Louis Lagrange, and
Pierre Simon Laplace. This led to the development of personal and pro-
fessional relationship between them. There was an amicable correspon-
dence between Euler and Goldbach, and Euler and Clairaut which dealt
with topical problems of number theory, mathematical analysis, differential
equations, fluid mechanics, and celestial mechanics. There were neither
any disagreements nor claims of one against the other. They discussed
all mathematical ideas and problems openly, often significantly prior to
their publication. Euler in Berlin and d’Alembert in Paris had an exten-
sive mathematical correspondence over many years. In 1757, they had a
strong disagreement, which eventually led to an estrangement, on whether
discontinuous or non-differentiable functions are admissible solutions of the
vibrating string problem. There was also a priority dispute between them
on the theory of the precession of the equinoxes and nutation of the axis of
the Earth. However, after d’Alembert visited Euler in Berlin in 1763, their
relation became more cordial. In 1759, the young Lagrange joined in the
discussion of solutions with a controversial article which was criticized by
both Euler and d’Alembert. However, Lagrange sided with most of Euler’s
views. In 1761, Lagrange, seeking to meet the criticisms of d’Alembert and
others, provided a different treatment of the vibrating string problem. The
debate continued for another twenty years with no resolution. The issues
in dispute were not resolved until Joseph Fourier picked up the subject in
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the next century. Although Euler made an important and seminal con-
tribution to calculus of variations, Lagrange, at the age of 19, made the
first formulation of the equations of analytical dynamics according to the
principles of the calculus of variations, and his approach was superior to
Euler’s semi-geometric methods. Thus, the classical Euler-Lagrange vari-
ational problem of determining the extremum value of a functional led to
the celebrated Euler-Lagrange equation.

It has been calculated that his publications during his life averaged
about 800 pages a year. His complete works entitled Opera Omnia con-
sist of nearly 80 volumes, each approximately between 300 and 600 pages.
Euler was undoubtedly the most prolific mathematical and physical scien-
tists of all time. His whole working life was totally dedicated to the pur-
suit of fundamental discovery, dissemination of mathematical and scientific
knowledge, and popularization of their value to common people. His famous
three-volume Letters to a German Princess on Different Subjects in Natural
Philosophy was one of the most popular books on science ever written and
it was translated from German into eight different languages. The Letters
addressed a wide variety of subjects including optics, acoustics, mechanics,
astronomy, music, dioptrics, electricity and magnetism. This publication
was essentially a unique encyclopedia of physical and philosophical ideas
written in a popular style for the widest possible common audience. This
work formed the basis for the reform of the teaching of physics and science.
These are just a few examples of his prodigious contributions.

This volume is intended as a tricentennial memorial tribute to this uni-
versal mathematical scientist. My desire as well as interest in writing this
book commemorating Fuler’s major contributions to mathematical and
physical sciences is founded on the deep respect and admiration for him
that T have gained from my own study and research of a small fragment of
his voluminous work. The origin of this book was essentially based on my
postgraduate course in the theory of elliptic functions and integrals with
applications in 1960s. Indeed, I was further stimulated by my own articles
and lectures for the last ten years on Euler and his major contributions.
These publications and presentations are intended for the great majority of
senior undergraduates and graduate students of mathematics, physics, and
engineering.

The intense and narrow specialization of contemporary mathematics is a
fairly recent phenomenon. The professional mathematical scientists spend
almost all of their time and energy on segments of mathematics or science
that seem to have little relationship to each other. They have hardly any
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time or opportunity to become familiar with the history of mathematics and
science. The emphasis on history may provide more broad perspective on
the whole subject and relate the subject matter of the courses not only to
each other, but also to the major developments of mathematical thoughts.
As Henri Poincaré eloquently wrote: “If you wish to foresee the future of
mathematics, our proper course is to study the history and present condi-
tion of science.” The writing of this volume was greatly influenced by the
above thought of Poincaré. This book may serve to some extent as a his-
torical introduction to mathematical sciences with the major emphasis on
selected Euler’s contributions. I hope that it will be helpful to professional
and prospective mathematical scientists.

While writing this book as an exposition and survey of history, three ma-
jor objectives have been kept in mind. The first is to focus each chapter on
a subject to which Euler made a significant research contribution. Included
are a short history of mathematical developments and discoveries before
Euler, and a brief sketch of the life, work, career, and major achievements
of Euler. The second is to present some historically significant, elegant, or
unexpected theorems, proofs and results with applications. The third is to
convey something of the fascination of mathematical sciences — of their
beauty, intellectual power, and wide variety. This book does not require a
graduate school mastery of any branch of mathematical sciences. It con-
tains a wide variety of material accessible to the widest possible audience
of mathematically literate readers.

It is my pleasure to express my grateful thanks to many friends, profes-
sional colleagues and students around the world who offered their sugges-
tions and help at various stages of the preparation of the book. I am par-
ticularly grateful to my graduate students, Arunabha Biswas and Arindam
Roy for helping me during the preparation of the book, especially for draw-
ing all the figures in the book. My special thanks to Ms. Veronica Chavarria
who cheerfully typed the manuscript with constant changes and revisions
and carefully checked all the names in the text. In spite of the best efforts
of everyone involved, some typographical errors will doubtlessly remain. I
wish to express thanks to Ms. Lai Fun Kwong and the Production Depart-
ment of Imperial College Press for their help and cooperation. Finally, I am
deeply indebted to my wife, Sadhana, for her understanding and tolerance
while the book was being written.

Lokenath Debnath
Edinburg, Texas
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Leonhard Euler (1707-1783):

Chronology

April 15, 1707 Euler was born in Basel, Switzerland.

1720

1724

1726-1727

1726-1741

1727-1741

1729

At the age of 13, he graduated from the University
of Basel with Philosophy Major.

At the age of 17, he received his Master’s degree with
a thesis comparing the philosophy of René Descartes
with that of Sir Isaac Newton.

Published first two research papers on the construc-
tion of isochronous curves in a resisting medium and
on reciprocal algebraic trajectories.

Maintained a regular contact with Johann Bernoulli
and his two sons Daniel and Nicholas.

Joined the Imperial Russian Academy of Sciences in
St. Petersburg and worked with Daniel Bernoulli and
Jacob Hermann. He was selected to become a Pro-
fessor of Mathematics at the age of 26, and to be in
charge of the Geography Department. This 14-year
stay in St. Petersburg was the first golden period of
his life.

He first discovered the first fundamental function
in real and complex analysis, known as the gamma
function defined by the infinite integral

xiii
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1730

1732

I(z) = / e~ dt, Rez >0,
0

as a generalization of the factorial function.

He also introduced the Eulerian integral of the first
kind, known as the Euler beta function, in the form

1
B(z,y) = / t* 11 —t)vldt, 2 >0, y > 0.
0

There is an elegant and beautiful relation between
these two functions given by

[(2)T(z)

PV =10y

Euler discovered his celebrated zeta function for real
s defined by an infinite series

1
Z’[’L_ S>1.

The value of ((s) for s = 1 led him to discover the
divergent harmonic series

il——+ L +1+ 00,
—n o 3 4 5

where each of its terms is the harmonic mean of the
two neighboring terms.

Euler stated memorable the FEuler-Maclaurin sum-

mation formula which was independently discovered

by Euler and Maclaurin. For a function f(z) with

continuous derivatives of all orders up to and includ-
n

ing (2m+2) in 0 < z < n, then the sum Z fk) is
k=0
given by the Euler-Maclaurin summation formula
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> s = | CFod+ L0 + fw)]
k=0

m

Bok [ree-1),\ _ pr-1)
2 iy [0 ) = fED )] + R,

where B are the Bernoulli numbers, and the re-
mainder term R, is

Ron = gty [ B (027 0.

1734 He married Catharina Gsell, daughter of a Swiss
artist then working in Russia and they had 13 chil-
dren and only 5 survived infancy.

1734-1737 Using the divergence of the harmonic series and the
identity

Euler proved that the number of primes is infinite.
Euler proved another remarkable theorem, for s > 1,

00 1 1 -1
=Y -T(1-5) -
n p
n=1 V4
where p is a prime. This establishes an unexpected

link between the zeta function in analysis and the
distribution of prime numbers in number theory.

1735 He discovered four distinct solutions of the Basel
problem of finding the sum of the squares of the re-
ciprocals of the integers, that is,

1 1 1 1 2
ﬁ+§+§+...+_+...:_,

(2= . _
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1736

1738-1740

1738-1741

1739

Euler first solved the famous problem of the Seven
Bridges of the city of Konigsberg on the River Pregel
that to determine a route around the city so that
one can cross seven bridges once and only once. He
proved that such a route is impossible. But with an
extra bridge added, he proved that the solution is
possible. This marked the beginning of a new area
of mathematics known today as graph theory.

He also published his two large volumes, Mechanica
sive motus scientia analytice exposita (Mechanics or
the science of motion, expounded analytically). The
two-volume Mechanica dealt with a comprehensive
treatment of almost all aspects of mechanics includ-
ing the mechanics of rigid, flexible and elastic bodies
as well as fluid mechanics, celestial mechanics and
ballistics.

He first discovered his celebrated equations which
described the principles of conservation of mass,
momentum, and energy. He then formulated the
renowned Euler equations of motion for both incom-
pressible and compressible inviscid fluid flows.

He won the Grand Prix of the Paris Academy and be-
came an eminent mathematical scientist in the whole
of Europe. He became blind in the right eye in 1738.

Political conditions of Russia became very unstable
and the Russian Government was reluctant to sup-
port scientific research. He became concerned about
his future in St. Petersburg. Fuler left St. Peters-
burg in 1741 for the Berlin Academy in Germany.

He published his treatise on the theory of music en-
titled An attempt at a new theory of music, clearly
expounded on the most reliable principle of harmony.
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1740

1741

1741-1766

1743

His other magnificent discovery was the universal
Euler constant v defined by the limit
1

. 1 1
y=1lim (1+s+5+-+——lnn

= 0.577215665....

This constant was linked with the finite harmonic
series and the logarithm function.

Euler single-handedly created the theory of parti-
tions of numbers by a brilliant use of generating
functions and formal power series. He surprised the
mathematical community of the world with the re-
markable expansion

o0

(—ahy= 3 (1o,

1 n=-—00

8

n

This led him to discover the Fuler Pentagonal Num-
ber Theorem in number theory.

At the invitation of the King Frederick the Great
of Prussia, Euler joined the newly organized Berlin
Academy of Science (originally founded by G. W.
Leibniz in 1700).

Remained in Berlin Academy of Science for 25
years and completed his greatest work on Mechanics,
Physics, Pure and Applied Mathematics. His 25-year
stay in Berlin was regarded as the second golden pe-
riod of his life.

Two of the greatest discoveries are Euler’s elegant
and beautiful formulas,

e+ = cos x4 i sin x,

xvii
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1744

1745

and he then established two magnificent formulas
e =—1 or €7 +1=0 and e —1=0.

These simple formulas relate to six fundamental con-
stants e, i, m, 0, 1 and —1 in mathematics and sci-
ence.

He was elected as Member of the Royal Society of
London and to the Paris Academy of Sciences, among
other many honors and awards.

He published his masterpiece treatise entitled Metho-
dus Inveniendi Lineas Curvas Mazimi Minimive
proprietate gaudentes sive solutio problematis isoper-
imatrici Latissimo Sensu Acceptl (A method for dis-
covering curved lines that enjoy a maximum or min-
imum property, or the solution of the isoperimetric
problem taken in its widest sense) which contained
his memorable extensive research in the theory of
Calculus of Variations.

He published his major research monograph on Theo-
ria Motuum Planetarum et Cometarum (The Theory
of Motion of Comets and Planets) with solutions
of major problems of theoretical astronomy with
nature, structure, motion and action of comets and
planets.

He translated Benjamin Robins’ 1742 treatise “New
Principles of Gunnery” in German with a large ex-
tensive commentary appended to it. His revised and
expanded version entitled Artillerie was published.

It was Euler who first made a serious attempt to
study divergent series and integrals in a systematic
manner. From the mathematical and physical point
of view, Euler’s ingenious work was very useful and
served as the foundation of more modern theory of
divergent series and integrals with physical applica-
tions.
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1746

1748

1749

1751

1753

Euler’s New Tables for Calculating the Position of
the Moon was published in Berlin.

He published his two-volume masterpiece treatise
on mathematical analysis entitled Introductio in
Analysin Infinitorum (Introduction to the Analysis
of the Infinite).

He completed the remarkable two-volume treatise
Scientia Navalis seu tractatus de construendis ac
dirigendis navibus (Naval Science) or Ship building
and Navigation in Berlin.

Euler proved a beautiful formula for {(2n), where
n(> 1) is a natural number, and he also discovered a
remarkable functional equation for the zeta function
in the form

(1= 5) = 2(2m)~* T(s)¢(s) cos (5 ).

where I'(s) is the gamma function discovered by Eu-
ler in 1729.

He established a major milestone through his exten-
sive research and study of elliptic functions and el-
liptic integrals. He also proved many notable results
which dealt with the addition and multiplication the-
orems of elliptic integrals. His brilliant work stimu-
lated tremendous interest amongst many great math-
ematicians including Gauss, Lagrange, Jacobi, Abel,
Galois, Weierstrass and Riemann.

Euler published his Memoir on Ballistics with the
first complete analysis of the equations of ballistic
motion in the atmosphere. He also published his
works on celestial mechanics and the fundamental
monograph on the theory of lunar motion.

Xix
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1755

1758

1759-1766

1760

1760-1762

He published his first comprehensive textbook on dif-
ferential calculus entitled Institutiones Calculi Dif-
ferentialis (Foundation of Differential Calculus).

Euler discovered the celebrated formula
V—E+ F =2 (the Euler characteristic)
for a regular polyhedra and tried to prove it.

He completed his notable masterpiece Memoir on
the Calculus of Variations. In addition, Euler was
involved in major administrative duties of the
Academy including the Observatory, Botanic Gar-
dens, Calendars and Maps.

He served as President of the Berlin Academy under
the direct supervision of King Frederick the Great of
Prussia who did not respect and trust him. The King
Frederick offered the Presidency of the Academy to
d’Alembert who was Euler’s scientific rival. So, Euler
became very concerned about his future career in
Berlin.

He first discovered the Euler phi-function ¢(n) to
generalize the Fermat Little Theorem in the form
a®™ =1 (modn), where (a,n) = 1. This function
has modern applications to a new area of mathemat-
ics known today as cryptography which deals with
secure system transmission of secret messages and
ciphers.

Euler wrote his famous Letters to a German
Princess, Anhalt-Dessau on different subjects in nat-
ural philosophy, astronomy, optics, music, acoustics,
electricity and magnetism that was one of the most
popular science books ever written in the history of
science.
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1765

1766

1766-1783

1768

1768-1770

1769-1771

Euler published his great third volume of his mechan-
ics book entitled Theoria motus corporum solidorum
seu rigidorum (Theory of Motion of Rigid Bodies).
It contained Euler’s differential equations of motion
of a rigid body under external forces. He introduced
the original idea of employing two coordinates — one
fixed, the other moving attached to the body, and
first derived differential equations for the angles be-
tween the respective coordinates axes, now called the
FEuler angles. He worked out many major and inter-
esting examples including the intriguing motion of
the spinning of the top.

At the age of 59, Euler received a cordial invitation
from the German Princess, Catherine the Great of
Russia, and moved back to St. Petersburg Academy.

His second St. Petersburg stay of 17 years can be
regarded as the third golden period of his life. This
period was very famous for his prolific and prodigious
scientific activities as he completed a large number of
epochal mathematical and scientific treatises and a
highly successful and popular work on mathematics,
science, and history and philosophy of science. It was
also a time that Euler suffered from several major
health problems and family disasters.

Euler wrote his treatise on geometrical optics in three
volumes and his tract on the motion on the Moon.

His three-volume textbook on integral calculus enti-
tled Institutiones Calculi Integralis was published.

The three volumes of Euler’s Dioptrics were pub-
lished. This work dealt with his extensive research
in optical sciences and optical instruments including
telescopes and microscopes.

xxi
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1770

1771

1773

1773-1776

1776

1776-1783

September 18,
1783

Euler published his two-volume treatise on Voll-
standige Anleitung zur Algebra (Elements of Alge-
bra).

His house was badly burnt down in a fire. He lost
his household, but most of his books and manuscripts
were saved. He became almost blind due to an un-
successful surgery to remove cataract in his left eye.

He published his remarkable book Théorie compléte
de la construction et de la manoeuvre des vaisseauz
(The Complete Theory of Ship Building and Naviga-
tion) which contained the theory of the tides and the
sailing of ships.

His wife, Catherina, died in 1773 after 40 years of
their married life and he remarried to Catharina’s
half sister, Salmone Gsell, in 1776.

Euler returned to mechanics with his seminal work
on definite formulation of the principles of linear and
angular momentum.

Fuler completed almost half of his work during his
most productive second 18-year stay at St. Peters-
burg. He continued his research on optics, algebra,
geometry, celestial mechanics, naval science, lunar
and planetary motion. In addition, he did some ma-
jor research on probability theory and statistics, car-
tography, geography, chemistry, agriculture, pension
funds, history of mathematics and science, medical
and herbal remedies.

At the age of 76, Euler died in St. Petersburg as a
result of a stroke while playing with his grandson.
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Chapter 1

Mathematics Before Leonhard Euler

“Number rules the Universe.”
The Pythagoreans

“Geometry has two great treasures: one is the theorem of
Pythagoras; the other, the division of a line in extreme and
mean ratio. The first we may name as a measure of gold, the
second we may name as a precious jewel.”

Johann Kepler

“As long as algebra and geometry proceed along separate paths,
their advance was slow and their applications were limited. But
when these sciences joined company, they drew from each other
fresh vitality and hence forward marched on at a rapid pace
towards perfection.”

Joseph Louis Lagrange

1.1 Introduction

Historically, mathematics originated from the fundamentals of counting in
arithmetic. It is considered one of the greatest achievements of the human
endeavor. Originally, it was the study of numbers or symbols and their
relations. These symbols were created to stand for the natural numbers 1,
2, 3, -+ which form an infinite collection on which the basic arithmetic
operations of addition and multiplication could be performed. It was the
Ancient Hindus and Greeks who first discovered the natural numbers, but
they did not acknowledge negative numbers. The first systematic algebra
to use zero, negative numbers, and the decimal system was developed by
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Hindu mathematicians in India during the seventh century A.D. They used
positive and negative numbers to handle financial transactions involving
credit and debit. Subsequently, mathematics has successfully been used to
precisely formulate laws of nature.

Mathematics has more than 5000 years of history. By 3000 B.C., the
people of Babylonia, China, Egypt and India had developed early and prac-
tical number systems. They used the knowledge of number systems in busi-
ness, industry, government, science and indeed, in everyday life. Between
600 and 300 B.C., the Greeks took the next great step in advancing the
knowledge of arithmetic, algebra, geometry and astronomy. They appear
to have been the first to develop mathematical theory of arithmetic and
geometry. Subsequently, it was realized that all scientific problems depend
on mathematics for qualitative and quantitative descriptions and mathe-
matical formulas became very useful for experiments and observations.

1.2 Pythagoras, the Pythagorean School and Euclid

Most of our knowledge of mathematics of the classical age came from the
writings of many mathematicians and philosophers including Pythagoras
(580-500 B.C.), Euclid (330-275 B.C.), Archimedes (287-212 B.C.) and
Apollonius (260-200 B.C.). For the Greeks, mathematics was then largely
synonymous with geometry which dealt with the measurement of land. In-
deed, geometry was derived from two Greek words meaning measurement of
the earth. The Ancient Egyptians used geometry to measure the size of their
firm lands, and to find boundaries of these firm lands after yearly floods of
the Nile River washed away or covered old landmarks. Classically, geome-
try dealt with the size, shape, area, volume or position of any object. More
importantly, geometrical concepts and numerical ideas have been wrapped
up together for thousands of years and they cannot be separated at all.

In about 540 B.C., Pythagoras established a school of mathematics and
natural philosophy at Crotona in southern Italy. The influence of this great
master Pythagoras was simply remarkable as his students and followers
were very loyal to him and they formed themselves a society or brother-
hood. They were known as the Order of the Pythagoreans. Members of
the Pythagorean School were very obedient and loyal to their great master,
shared everything in common, held the same religious and philosophical
beliefs, made a commitment to the same pursuits and bound themselves
to an oath not to reveal their own secrets and teachings of the school.
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Fig. 1.1 The star pentagon.

It is remarkable that the school discovered a beautiful star pentagon or
pentagram (see Figure 1.1), the most fitting badge of the Pythagorean
brotherhood. It was also a fitting symbol of mathematics and the Greek
emblem of health. In addition to their unique contributions to mathemat-
ics, particularly, to geometry and number theory; the Pythagoreans were
specially interested in the study of medicine and music. Figure 1.2 shows
an infinite sequence of nested pentagons.

They developed a large body of knowledge in geometry and properties
of numbers, and proved a large number of geometrical theorems including
one of the most famous theorems in geometry known as the Pythagorean
Theorem:

& =a* 4+ v? (1.2.1)

for any right-angled triangle of sides a and b adjoining the right angle and
¢ is the hypotenuse.

This theorem has probably received more diverse proofs than any other
theorem in all of mathematics. In the second edition of his book entitled
The Pyathgorean Proposition, E. S. Loomis (1968) has reported about 367
demonstrations (or proofs) of this famous theorem. Making reference to
Figure 1.3, a dissection type proof of this famous theorem can be given as
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A

C D

Fig. 1.2 Sequence of nested pentagons.

follows. The first square of side (a + b) is dissected into four equal right
angled triangles of sides @ and b and a square of side ¢ so that (a + b)? =
4(1ab) + ¢* = 2ab + ¢*. The second figure is dissected into two squares
and four equal right angled triangles so that (a 4 b)? = 4(3ab) + a® + b°.
Equating two equal expressions readily gives (1.2.1).

One of the Indian mathematicians, Bhaskara gave a second proof of the
Pythagorean theorem by drawing the altitude on the hypotenuse of the

a b a b

b a

Fig. 1.3 Dissection of two equal squares.
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C

A C D B
Fig. 1.4 A right angled triangle with ZACB = 90°.

right angled triangle ABC with ZACB = 90°. It follows from similar right
angled triangles as shown in Figure 1.4 that
a m b n

- = — d -=-—.
c a an c b

Bhaskara gave another proof using dissection in which the square on
the hypotenuse is divided into four equal triangles, (see Figure 1.5) each is
congruent to the given right angled triangle of sides a, b, and ¢ and a square
with side b — a. Clearly, a simple algebra supplies the proof as follows:

1
02:4<§ab)+(b—a)2:a2+b2

or
a®>=cm and b2 =cn
so that
a?+b*=c(m+n)=c2
[
AY ’/’
\\ ,”a 7|
\\a - 7
Ead Va
\\ ’z' \\ b_a b'a I,
\\r'b_a \\ ’
C \ \ C ,l
A A RS ’
N P S ‘e
\ e N . K b
- . <. C
a -~ an a e )/
.7 \ SN ’
PRe \ Se ’
. » b ~o s a
c

Fig. 1.5 Dissection of a square into four triangles and a square.
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A famous British mathematician, John Wallis (1616-1703) rediscovered
this ancient proof in the seventeenth century. For several other proofs of the
Pythagorean theorem, the reader is referred to Loomis’ book (1940) and
to a book entitled Great Moments in Mathematics Before 1650 by Howard
Eves (1911-2004) published in 1983.

When a = b = 1, ¢ = /2, an irrational number which cannot be
expressed as the ratio of two integers. In other words, the rational numbers
are not adequate for measuring the hypothenuse of a right-angled triangle
whose base and height are unity. The discoveries of Pythagoras theorem and
the irrational numbers were the greatest achievements of the Pythagoreans
in the history of mathematics. Indeed, the Pythagorean discovery of an
irrational number led to the solution of equations such as

2 =2 (1.2.2)
Although z = v/2 is irrational, but it can be expressed in terms of approx-
imate rational numbers 1.4, 1.41, 1.414, --- with finite number of decimal

places.

The Pythagoreans also proved many geometrical theorems including the
equality of the base angles of an isosceles triangle, and the sum of three
angles of a triangle is equal to two right angle. They also proved the famous
algebraic identities

(a+0)* = a® + 2ab + b? (1.2.3ab)

using purely geometrical arguments.

More remarkably, they made three great discoveries: the first, one was
the introduction of proof in mathematics, that mathematical proof must
proceed from given assumptions, the second one was that the natural num-
bers were insufficient for the construction of mathematics, and the third
one was that the set of natural, rational and irrational numbers form the
complete set of real numbers with the geometrical interpretation. Geometri-
cally, to each real number corresponds to one and only one point on the real
line. In addition, there were three famous unsolved problems that exerted
so great influence on the development of Greek mathematics. The original
idea was to solve them by ruler and compasses constructions. However, the
impossibility of solutions by a ruler and a compass kept these problems at
the center of the mathematical stage for many centuries.

The first problem was known as the Delian problem which dealt with
the doubling of a cube, that is, to construct a cube whose volume is twice
that of a given cube. Mathematically, the problem is to find a solution of

3 =2 (1.2.4)
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In about 400 B.C., Archytas brilliantly solved the problem by finding the
point of intersection of three surfaces in three-dimensional space: a cylinder,
a cone, and a torus generated by rotating a circle about one of its tangents.
This was indeed a most remarkable achievement of Archytas as there was
little known then about three-dimensional (or solid) geometry.

The second problem was the trisection of a given angle 8 by a ruler and
a compass. Mathematically, it reduces to a solution for # which satisfies
the equation

42® — 32 — cosf = 0. (1.2.5)

For § = 60° so that cos@ = . The polynomial on the left of (1.2.5) is
irreducible over the field @ of rational numbers. It can be shown that 6
cannot belong to a field extension E of @ of degree 2. Consequently, the
trisection of an angle 8 = 60° is not possible with a ruler and a compass.
For the construction of regular polygons with a ruler and a compass, the

set of complex solution of the well-known cyclotomic equation
" —-1=0 (1.2.6)

contains the number one and divides the unit circle into n equal parts. The
solution is possible with the aid of the following theorem due to Gauss:

Theorem of Gauss: A regular n-gon can be constructed with ruler and
compass if and only if

n=2"pips--pr, (1.2.7)

where m is a natural number and p!.s are pair distinct Fermat’s primes of
the form

Fr=22"41, k=012-. (1.2.8)

It is probably known that for £ =0, 1, 2, 3, 4, the above number is prime.
Consequently, a regular n-gon can be constructed for n in the list of primes
2,3, 5,17, 257, 65,537. For n < 20, the construction of all regular n-gons
with n = 3, 4, 5, 6, 8, 10, 12, 15, 16, 17,20 is possible using only a ruler
and a compass.

Finally, the third problem was to square the circle, that is, to construct
a square with ruler and compass whose area is equal to that of a given unit
circle. The length x for the sides of a square is a solution of the equation

z? =m. (1.2.9)

In 1882, Ferdinand Lindemann (1852-1939), David Hilbert’s (1862-1943)
teacher, proved the transcendence of the number 7 over the field @Q of
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rational numbers. Consequently, number x or m cannot be an element of
any algebraic field extension of Q). So the problem has no solution. Clearly,
the first two problems are algebraic so that they require the solution of
a cubic equation. The third problem is totally different as it involves the
transcendental number 7.

Indeed, in mathematics, the Pythagoreans made great progress, partic-
ularly in the theory of numbers, and in geometry of line, plane and solid
figures, and also, lengths, areas, and volumes associated with them. It is
the most appropriate to recall the delightful quotation of Johann Kepler
(1571-1630): “Geometry has two great treasures: one is the theorem of
Pythagoras; the other, the division of a line in extreme and mean ratio.
The first we may name as a measure of gold, the second we may name as
a precious jewel.”

In Greek mathematics, there was another remarkable number, the so
called the golden number (or golden ratio) that is defined in geometry by
dividing a straight line segment in such a way that the ratio of the total
length [ to the larger segment x is equal to the ratio of the larger to the
smaller segment. In other words, the golden ratio, g = (I/x) is determined
by the equation

l x
- = 1.2.10
x l—x ( )
or, equivalently,
g —g—1=0. (1.2.11)
The positive solution of quadratic equation (1.2.11)
1
9=-=3 (\/5+ 1) = 1.618. (1.2.12)
The inverse ratio of g is
1 z 1
—=2=5(v5-1) =068 1.2.13
g 1 2 (\/— ( )

sothaté:g—l.

In geometry, the Pythagoreans developed the theory of space filling fig-
ures, whatever the motivation for their work, the Pythagoreans evidently
considered the geometrical figures to be very important for space filling. For
example, one of the diagrams (see Figure 1.6) shows six equal equilateral
triangles filling space around their central point. But five such equilateral
triangles can similarly be fitted together to generate a bell-tent-shaped fig-
ure around a central vertex so that their bases form a regular pentagon.
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Fig. 1.6 Pythagorean or Six Equilateral Triangles filling space around the center.

Such a figure becomes a solid figure with the vertex of a regular icosa-
hedron. This process can be repeated by surrounding each vertex of the
original equilateral triangles with five triangles. Exactly twenty equilateral
triangles are required to generate the beautiful solid figure of the icosa-
hedron of twelve vertices and twenty faces. It is remarkable that in solid
geometry there are exactly five such regular figures, known as regular poly-
hedra (or Platonic solids), and that in the plane there is a very limited
number of regular space-filling geometric figures. The first three sim-
plest regular polyhedra including tetrahedron, cube and octahedron were
found by Egyptian mathematicians. Pythagorean discovered the remain-
ing two — the icosahedron, and the dodecahedron with twenty vertices and
twelve faces.

It is important to point out that a study of the properties of the regular
pentagon led to the discovery of the golden ratio, the ratio in this case being
that of the diagonal of the pentagon to its side. In Figure 1.7, the diagonal
AC of the pentagon divides the diagonal BE into two unequal segments BP
and PF such that the ratio of the smaller segment to the larger is equal to
the ratio of the larger segment to the whole diagonal. In fact, any diagonal
of the regular pentagon divides any other interesting diagonal in this way.
Such division was known to the Greek mathematicians as “division of a
line in mean and extreme ratio”. We have already stated that this ratio
is the golden ratio ¢ = (BE/PE), where BE = ¢ and PE = z so that
the algebraic formulation is (¢ — z)/z = (x/¢). This leads to the quadratic
equation (1.2.11) in the golden ratio g.
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A

C D

Fig. 1.7 A Regular Pentagon ABCDE.

Some of the angles associated with Figure 1.7 follow from the con-
struction of the triangle ACD with angles ZACD = ZADC = 72° and
ZCAD = 36°. It is then a simple matter to construct the complete pen-
tagon so that ZABC = 108°, /BAC = 36° = Z/BCA, and hence, all angles
of the pentagon are known.

It was Euclid of Alexandria (365-300 B.C.) made the first systematic
development of Euclidean geometry in his famous treatise, The Elements in
13 volumes. These volumes represented a standard reference of geometry
and number theory and a great model for the first axiomatic method in
mathematics. He first proved that the number of primes is infinite which
is one of the fundamental results in mathematics. However, the first com-
pletely rigorous axiomatic method of mathematics from a modern point of
view was given by David Hilbert in his Principle of Geometry that was
published in 1899. The Greek mathematicians also advanced other areas
of mathematics and astronomy. Archimedes (287-212 B.C.) of Syracuse
also made many other major contributions to mathematics and mathe-
matical physics. He determined the center of mass of bodies and simple
surfaces and derived the formula for the workings of levers and equilibrium
of floating bodies. His major work for finding areas and volumes marked
the birth of calculus. Archimedes was probably the last great mathemat-
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ical scientists of ancient times. Another Greek mathematician, Claudius
Ptolemy (85-169 A.D.) of Alexandria became famous for his major contri-
butions to plane and spherical trigonometry and astronomy. Diophantus
of Alexandria worked on theory of equations and earned the title of Father
of Algebra. During the Middle Ages, the greatest discoveries in India were
natural numbers including zero and the decimal number system. Accord-
ing to P. S. Laplace (1749-1827): “It is India that gave us the ingenious
method of expressing all numbers by ten symbols, each symbol receiving
a value of position, as well as an absolute value. We shall appreciate the
grandeur of the achievement when we remember that it escaped the genius
of Archimedes and Apollonius.”

1.3 The Major Impact of the European Renaissance on
Mathematics and Science

During the middle ages, the Italian mathematician Leonardo of Pisa (Fi-
bonacci (1170-1250)) published his major book Liber Abaci in 1202, an in-
fluential book which introduced the Hindu-Arabic number system to West-
ern Europe. The European Renaissance, from the 1400 to the 1600s pro-
duced many great advances in physics, astronomy, pure and applied math-
ematics. Michael Stifel (1487-1567), Nicolo Tartaglia (1506-1557), Giro-
lamo Cardano (1501-1576), and Francois Viete (1540-1603) made major
contributions to algebra, trigonometry and quadratic and cubic equations.
Viete introduced the use of letters to stand for unknown quantities. Nico-
laus Copernicus (1473-1543), the great astronomer who boldly rejected the
fourteen-hundred year old Ptolemy’s mathematical theory of astronomy
with the Earth at the center of the universe and discovered the revolu-
tionary modern heliocentric picture of the universe with the Sun at the
center and made contributions to mathematics through his great work in
astronomy with the publishing of De revolutionibus orbium coelestium in
1543.

Thoroughly convinced by the beauty and harmony of the Copernicus
heliocentric system that the planets revolve in orbits about the sun at
the center of the Universe, a great German mathematical scientist and as-
tronomer, Johann Kepler used his brilliant imagination and amazing per-
severance to modernize the Copernicus model in mathematical astronomy.
As a research assistant to the famous Danish-Swedish astronomer, Tycho
Brahe (1546-1601), Kepler had the rare opportunity to utilize Brahe’s pre-
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cise and extensive observational data. Based on these observational data,
Kepler first discovered his three famous laws of planetary motion, the first
two founded in 1609 and the third one ten years later in 1619. Kepler’s
laws of planetary motion are considered as major landmarks in the history
of mathematical science and astronomy, for in the effort to justify them,
Newton was led to discover modern celestial mechanics during 1660-1666.
In his celebrated work of 1619, Harmony of the World, Kepler expressed
his great satisfaction with the following statement in the preface:

“I am writing a book for my contemporaries or — it does not matter
— for posterity. It may be that my book will wait for a hundred years for
a reader. Has not God united for 6000 years for an observer?”

The 1600s brought many major discoveries in mathematics and astron-
omy. Two British mathematicians, John Napier (1550-1617) and Henry
Briggs (1556-1631), first Savilian Professor of Geometry at the University
of Oxford, invented logarithms to the base of 10. Logarithms to the base of
10 are usually known as Briggian logarithms, through the advantage of us-
ing this base appears to have occurred independently to Napier and Briggs.
Napier published his book Mirifici logarithmorum canonis descriptions, in
which logarithms are introduced in great detail. On the other hand, two En-
glishmen, Thomas Harriot (1560-1621), and William Oughtred (1557-1660)
developed new methods for classical algebra. Galileo Galilei (1564-1642) an
Italian astronomer and physicist and Johann Kepler, a German mathemati-
cian and astronomer tremendously expanded knowledge of mathematics
and physics through their studies of astronomy, physics and mathematics.
Galileo discovered the famous law of falling bodies which marked the be-
ginning of modern experimental physics. He suggested that all bodies are
attracted to the Earth by the constant gravitational acceleration regardless
of their weights. His famous experiment dealt with dropping two unequal
weights from the top of the Leaning Tower of Pisa. This became controver-
sial because it contradicted Aristotle’s (384-322 B.C.) old views that heavy
bodies fell faster than lighter ones. It is also important to mention Galileo’s
work on the curve cycloid in 1630 and his suggestion that arches of bridges
should be built in the shape of cycloid. The quadrature (or finding an
area) of the cycloid has been calculated in 1630 by Evangelista Torricelli
(1608-1647), a student of Galileo. About the same time, Pascal proved
many new theorems about properties of cycloid and calculated the area of
the segment of cycloid. This was followed by another remarkable discovery
of a great Dutch mathematical scientist, Christian Huygens (1629-1695)
in 1658 that was concerned with the solution of the problem of the tan-
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tochronous motion. Indeed, the cycloid is a true tantochrone that is, if a
particle is allowed to slide from rest down a cycloid, it takes exactly the
same time to reach the bottom, no matter where it starts from. Huygens
also made another discovery that a pendulum bob swinging along a cycloid
curve takes exactly the same time to make a complete oscillation whether
it swings through a small or large arc. He made many new and sensational
discoveries in physics and astronomy including his strong support for the
Copernicus heliocentric model of the universe. In 1609, he build a telescope
that has opened new worlds in astronomy, and has become an indispensable
instrument for centuries for astronomy.

Galileo discovered the laws of pendulum and was credited for his most
remarkable discovery of four bright satellites of the planet Jupiter in 1610.
In the same year, he observed some peculiar form of the planet Saturn.
His historic achievements in astronomy dealt with the discovery of many
more and more powerful telescopes that were sold in Europe. This instru-
ment has made it possible to study, observe and photograph many heavenly
bodies which were formerly unknown. His name and fame as the greatest
experimental scientist of his time attracted many scholars from all parts
of Europe. Christian Huygens also built a powerful telescope which made
possible his new discovery of satellites and the rings of Saturn. He was the
first one who used a pendulum to regulate a clock and then applied the
basic principles of pendulum in building astronomical clocks. In addition,
he investigated the wave theory of light and discovered the polarization of
light.

Galileo is universally considered as the founder of methodology of mod-
ern science. His radical departure from the Greeks, the medieval and con-
temporary scientists led him to establish the fact that matter as well as
motion were only the first step to a new approach to nature. In 1632,
he published his beautifully written masterpiece, A Dialogue on the Two
Principal Systems of the World in which he gave a critical evaluation of
the comparative merits of the old and new theories of motions of the ce-
lestial bodies. He spent considerable amount of time in writing on force
and motion. In particular, his firm helicentric views of the universe was in
severe disagreement with religion doctrines of the Inquisition. In 1638, he
published his other greatest classic, Dialogues on the Two New Sciences in
which he founded the modern science of mechanics. It contained his life’s
work on motion, acceleration, and gravity and provided a sound basis for
the three laws of motion formulated by Sir Isaac Newton (1642-1727) in
1687.
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Without being too precise, mechanics is simply the study motion of ma-
terial bodies (or particles) that can be described by mathematical models.
In mechanics, a body (particle) is supposed to be subject to certain forces,
which affect its motion according to certain laws. Expressed in the language
of mathematics, these laws usually take the form of differential equations,
that is, they connect the position, velocity, momentum, acceleration of the
body at a particular instant of time. They do not primarily describe the
whole motion, but merely the laws governing it. It is the motion as a whole
which has to be derived from the law. In other words, this is a problem
of solving differential equations with time as the independent variable, and
there are one or more dependent variables which determine the position of
the body.

Galileo’s two greatest classics are not only two profound books of all
time, but they are clear, direct, truly powerful and fascinating in the history
of science and philosophy. In general, his scientific philosophy and scientific
method were in agreement with those of Descartes, Huygens, Newton and
others. His new methodology of science led him to believe in the total refor-
mulation that not only imparted expected and unprecedented power to sci-
ence, but bound it indissolubly to mathematics. It was Galileo who remark-
ably discovered the more radical, more effective and more practical meth-
ods for modern science. He demonstrated the profound effectiveness of his
approach to science through his own work. It is a delight to quote a philoso-
pher, Thomas Hobbes (1588-1678) who said of Galileo: “He has been the
first to open to us the door to the whole physics.” Galileo himself was con-
vinced that nature is simple, orderly, and mathematically designed which
can be documented by his own famous 1610 quotation: “Philosophy [na-
ture] is written in that great book which ever lies before our eyes — I mean
the universe — but we cannot understand it if we do not first ... labyrinth.”

Both Galileo and Newton strongly emphasized that mathematical prin-
ciples are quantitative principles which played a vital role in providing the
correct physical explanation of natural phenomena. They also believed that
experiments are needed to establish basic laws of science. In the preface to
his Principia, Newton expressed his firm views on the intimate relationship
between the mathematical principles (or laws) and the natural phenomena
as follows:

“Since the ancients (as we are told by Pappus) esteemed the science
of mechanics of greatest importance in the investigation of natural things,
and the moderns, rejecting substantial forms and occult qualities, have en-
deavored to subject the phenomena of nature to the laws of mathematics, I
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have in this treatise cultivated mathematics as far as it relates to philosophy
[science] ... and therefore I offer this work as the mathematical principles
of philosophy, for the whole burden in philosophy seems to consist in this
— from the phenomena of motions to investigate the forces of nature, and
then from these forces to demonstrate the other phenomena....”

Finally, we close this section by adding the most tragic event of Galileo’s
life. In 1633, after a long and painful trial by a tribunal of the Inquisition
because of his heliocentric view of the universe contrary to church teachings,
he was sentenced to house imprisonment for the rest of his life. He remained
a prisoner in Florence until his death in 1642.

During the Renaissance period, two great French mathematicians, René
Descartes (1596-1650) and Pierre de Fermat (1601-1665) created a new
branch of mathematics which is now known as analytic geometry. By the
1630s, both men discovered the basic idea of using algebraic equations to
represent curves and surfaces and investigated their fundamental proper-
ties. Descartes’ major objective was to unify the hitherto largely two sepa-
rate disciplines of algebra and geometry, in particular to use the algebraic
method to solve geometrical construction problems. His great mathematical
work dealing with applications of algebra to geometry was La Géométrie.

On the other hand, based on the work of Apollonius on conic sections,
Fermat discovered the fundamental principle of geometry, which he ex-
pressed thus: “Whenever in a final equation two unknown quantities are
found, we have a locus, the extremity of one of these describing a line,
straight or curved.” This profound statement was written at least one year
before the publication of Descartes’ La Géométrie. Fermat formulated his
major ideas further in his short book entitled Ad locus planos et solidos is-
agoge (Introduction to Loci Consisting of Straight Lines and Curves of the
Second Degree) which was published in 1679 — almost fourteen years after
his death: That is why Descartes is widely recognized as the sole creator
of coordinate geometry. However, it clearly follows from Fermat’s above
quotation that his approach is undoubtedly more simple, direct and more
systematic than that of Descartes. In the eighteenth century, the view that
the algebraic approach to geometry was more than a mathematical tool.
Algebra itself is a fundamental method of introducing and investigating
curves and surfaces in general. All these simply mean that the analytic
geometry paved the way for a complete unification of algebra and geometry
from a modern point of view.

Based on the great work of the classical masters, Apollonius and Dio-
phantus on geometry, in general and conic sections, in particular, Girard
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Desargues (1591-1661) created a totally new branch of geometry in 1639
which is now know as the Projective Geometry. It deals with the study
of the descriptive properties of geometrical figures. In other words, it is
basically concerned with those geometrical properties which are unchanged
by the operation of section and projection. The basic metrical properties in
geometry which include distance, areas, angles, congruence, and similarity
are not considered in projective geometry. For example, the Pythagorean
Theorem for a right angled triangle (¢> = a? +b?), the area of a triangle of
base a and height h (A = %ah) and the sum of the three angles of a triangle
ABC (A+ B+ C = m) are famous metrical theorems. Projective geometry
has grown into a vast and beautiful branch of geometry through the major
works of great French mathematicians including Desargues, Blaise Pascal
(1623-1662), Gaspard Monge (1746-1818) and Jean Victor Poncelet (1788-
1867). Like several other branches of geometry, it has become a new source
of mathematical knowledge for the study of descriptive geometry.

The observed symmetry between points and lines in a projective plane
leads to the so-called principle of duality which is one of the most elegant
properties of the projective geometry. This basic principle states that, in
a projective plane, every theorem (or proposition) remains true when the
words point and line are consistently interchanged. Thus, given a theorem
and its proof, we can immediately formulate the dual theorem whose proof
can be written down mechanically by the use of the duality principle in
every step of the proof of the original theorem.

Desargues not only introduced many ideas, notably the point and the
line at infinity and gave elegant proofs of many new theorems. Above all,
he first discovered the concepts of section, projection and cross-ratio of four
points which were used to give a new method of proof. He then developed a
unified approach to several types of conic sections through projections and
sections. It may be appropriate to give some examples of basic theorems
in projective geometry. One such example is the Desargues’ famous two-
triangle theorem which is illustrated in Figure 1.8 with a vortex O and
the triangle A'B'C" is obtained from the triangle ABC by projection and
section from the vertex O. Desargues’ theorem then states that the three
pairs of the corresponding sides AB and A'B’, BC and B'C’, and AC
and A'C" (or their extensions) of two triangles perspective from a point
meet in three colinear points L, M, N as shown in Figure 1.8. Conversely,
if the three pairs of corresponding sides of the two triangles meet in three
points that lie on one straight line, then the line joining corresponding
vertices meet in one point. In other words, making reference to Figure 1.8,
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L

Fig. 1.8 The Desargues two triangles.

the converse theorem asserts that since AA", BB', and CC’ intersect at
a point O, the sides AB and A B’ intersect at a point L, AC and A'C’
meet in a point M and BC and B'C’ meet at N; then L, M, and N lie
on a straight line. It is important to note that both theorems are true
whether the triangles ABC and A'B'C” lie on the same or different planes.
Desargues gave an elegant proof of his theorem and its converse for both
two- and three-dimensional cases.

The second major contributor to projective geometry was Pascal. In
1640, at the age of sixteen, Pascal gave a pleasant surprise to the world
by publishing a short book entitled FEssai pour les coniques in which he
described his celebrated theorem of the heragrammum mysticum (Mystic
Hexzagram). It is universely known as the Pascal Theorem which is illus-
trated in Figure 1.9, and it states that the three pairs of opposite sides of a
hexagon inscribed in a conic meet in three collinear points. In other words,
making reference to Figure 1.9, if BA and DFE intersect at L, C'D and AF
intersect at M, and BC and F'F intersect at N, then L, M, N lie a straight
line. Conversely, if a hexagon is such that the points of intersection of its
three pairs of opposite sides lie on a straight line, then the vertices of the
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Fig. 1.9 The Pascal hexagon in a conic.

hexagon lie on a conic. However, Pascal did not give an explicit proof of
his theorem and its converse. He simply stated that his theorem is true for
a circle and it must also be true for a conic by the method of projection.

Desargues regarded Pascal’s 1640 essay was so brilliant that he could
not believe it was written by such a young man. He encouraged Pascal to
do more research on projective geometry in order to develop the method of
projection and section further. At the advice of Desargues, Pascal began
working on conics and used projective methods, that is, projection and sec-
tion. He admired Desargues’ work and acknowledged his debt to Desargues
by saying : “I should like to say that I owe the little that I have found on
this subject to his writings.”

In addition to his contribution to projective geometry, Pascal made ma-
jor contributions to the mathematical theory of probability. In 1654, a
French man, the Chevalier de Méré, suggested some problems associated
with games of chance. During that time, Pascal had some correspondence
with Pierre de Fermat dealing with these problems of games of chance and
gambling in general. Thus, the first research collaboration of Pascal and
Fermat on problems of games and chance led to mark the birth of the math-
ematical theory of probability which is now widely used in mathematical
statistics. Based on some results of Fermat and Pascal, Christian Huygens
wrote the first treatise on probability in 1657. About the same time, Pascal
wrote a treatise entitled Traité du triangle arithmétique which included the
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coefficients of the binomial expansion

n

(@+d)"=> () a" " v, (1.3.1)

r=0
so that, when a =b =1,

n

> =2m, (1.3.2)

=0
the number of combinations of n objects taken r at a time is,

n!

"Cr="0=——7—, 1.3.3
) (n—mr)!r! ( )

the Pascal recurrence relation
"C. 4" Cry = "TIC,, (1.3.4)

and the coefficients of the binomial formulas organized into famous Pascal’s
triangle. Pascal made an extensive study of the properties of his triangle, in
the course of which he discovered the principle of mathematical induction.
This principle, which states the validity of the mathematical argument by
recurrence, is now considered as one of the fundamental axioms of modern
mathematics. Many proofs in mathematics are based on the famous prin-
ciple of induction. Pascal became a renowned scientist in Furope for his
fundamental works in geometry, hydrostatistics and probability theory. He
also invented a new calculating machine which is still preserved in a French
museum.

After a century of slow progress, the revival of the projective geome-
try received considerable attention by Gaspard Monge (1746-1818) and his
school at the Ecole Polytechnique. Monge’s extensive work in descriptive
geometry, ordinary and partial differential equations won the remarkable
admiration from mathematical scientists of the world. His greatest student
was Poncelet who published his famous Treatise on the Projective Proper-
ties of Figures in 1822 which he subsequently expanded and revised this
treatise and later published in two volumes entitled Applications d’analyse
et de géométrie (1862-1864). All these published works were his major con-
tributions to projective geometry and to the creation of modern projective
geometry. He was the first mathematician to recognize fully that projective
geometry was a new branch of geometry with methods and results of its
own. He formulated the general problem of seeking all properties of geo-
metrical figures which were common to all sections of any projection of a
figure, that is, remained unchanged by projection and section. His work
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was essentially based on three major ideas: homologous figure, principle
of continuity, and pole and polar with respect to a conic. Two figures are
called homologous if one can be derived from the other by one projection
and a section. In his 1822 Traité, Poncelet phrased the principle of conti-
nuity as: “If one figure is derived from another by a continuous change and
the latter is as general as the former, then any property of the first figure
can be asserted at once for the second figure.” He advanced the principle
as an absolute truth and used it in his Traité to prove many theorems, and
then generalized the principle to make assertions about imaginary figures.
The concept of pole and polar with respect to a conic was the third major
idea in Poncelet’s work. He gave a general formulation of the transforma-
tion form pole to polar and conversely. His major objective in studying
polar reciprocation with respect to a conic was to establish the principle
of duality in projective geometry. By virtue of this principle, lines can be
as fundamental as points in the development of plane projective geometry.
Like others, Poncelet recognized that theorems dealing with figures lying
in one plane when interchanged the word point by line and vice versa not
only made sense but proved to be true in general. It is fair to say that all
major contributors to projective geometry made the significant efforts to
elevate the subject to hew heights of rigor, clarity, elegance and generality.

The Renaissance mathematical scientists including Copernicus, Brahe,
Kepler, Galileo, Pascal, Huygens, Descartes, Newton and Leibniz spoke
repeatedly of the cohesiveness and harmony that God imparted to the Uni-
verse through His mathematical laws and design. These men discovered
mathematical knowledge that would reveal the grandeur and glory of God’s
creation. Once Galileo said: “Nor does God less admirably discover Himself
to us in Nature’s action than in the Scriptures’ sacred dictions.” Towards
the end of the Renaissance period, many European scientists became very
active in the formation of scientific societies or research institutes in order
to stimulate more scientific research and to increase communication among
mathematical scientists. Although the Italian academies and professional
societies were founded in the early seventeenth century with Galileo and
his students as members, but, unfortunately, they were disbanded after a
while. For example, in France, several mathematical scientists including
Desargues, Descartes, Fermat and Pascal met informally under the leader-
ship of Marin Mersenne (1588-1648) to organize the Academie Royale des
Sciences in 1630s. In England, John Wallis began in 1645 to hold meetings
in Greshan College, London in order to establish a similar organization in
England. This informal group was chartered by Charles IT in 1662 and es-
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tablished the Royal Society of London for the promotion and dissemination
of scientific knowledge. Its first president was a famous mathematician,
Lord William Brouncker (1620-1684). The Philosophical Transactions of
the Royal Society began its publication in 1665 and it was one of the first
research journals to include mathematical and scientific papers. The French
Academy of Sciences was founded by Colbert in 1666. The famous Lucasian
Chair of Mathematics was established at the University of Cambridge in
1663 by Henry Lucas (1610-1667) who was a former student of Cambridge.
The first professorship in mathematics was established at the University of
Oxford in 1619. John Wallis became of professor of mathematics at Oxford
in 1649 and held the Chair of mathematics until 1702. On the other hand,
Gottfried Wihelm Leibniz (1646-1716) in Germany provided a major lead-
ership role for some years to establish the Berlin Academy of Sciences in
1700 with Leibniz as its first President. In Russia, Peter the Great founded
the Academy of Sciences at St. Petersburg in 1724. These academies and
their scientific journals opened new outlets for mathematical and scientific
communication first in Europe and then in other nations of the world. They
not only promoted new scientific research, but also supported scientists for
the cultivation of mathematics and sciences and for making mathematics
and science more useful for the society. These professional organizations
played the major role in advanced study and research, and in dissemination
of scientific and mathematical knowledge throughout the world.

1.4 The Discovery of Calculus by Newton and Leibniz

Historically, Sir Isaac Newton and Gottfried Wihelm Leibniz independently
discovered the calculus in the seventeenth century. In recognition of this
remarkable discovery. John Von Neumann’s (1903-1957) thought seems to
worth quoting. “... the calculus was the first achievement of modern math-
ematics and it is difficult to overestimate its importance. I think it defines
more equivocally than anything else the inception of modern mathematics,
and the system of mathematical analysis, which is its logical development,
still constitute the greatest technical advance in exact thinking.”

Both Newton and Leibniz recognized that calculus can be regarded as
the branch of mathematical study which treats change and the rate of
change. They also observed the close connection between algebra and ge-
ometry, epitomized by the fact that every equation has a graph and every
graph an equation.
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By 1664, the young Newton became familiar with all mathematical ideas
and results of his predecessors and was fully ready to discover his own. In
his new analytical methods, Newton remarkably combined the ideas, results
and methods of three largely separate branches of mathematics: coordinate
geometry, calculus and infinite series (or more precisely, the representation
of functions by infinite series). During 1664-1666, Newton developed all
the basic ideas and methods in his first version dealing with the fluxional
calculus. In this work, he treated variables as moving quantities changing
with time and introduced the concept of velocity and acceleration at any
instant of time. He then considered exposition of his ideas and results
in the book Methodus Fluzionum et Serieum Infinitarum (The Method of
Fluzions and Infinite Series) which was not published until 1736, after
his death. In his book, Newton treated variables as flowing quantities
generated with time by the continuous motion of points, lines and planes,
rather than as static infinitesimal quantities as in his first version of the
calculus. He defined a variable quantity = or y as the fluent, and its rate
of change with respect to time as the fluxion which was denoted by & and
¥ (the Newtonian dot notation) which is now known as the derivative or
the wvelocity. Subsequently, he stated more clearly the fundamental problem
of calculus by introducing any two variables rather than the time as the
independent variable. For example, y = z” so that, in modern notation,
(dy/dr) = na™ . One of the outstanding problems of the seventeenth
century was that of finding the tangent to a curve at an arbitrary point.
It was solved by Newton’s teacher at Cambridge University, Isaac Barrow
(1630-1677). Newton developed the idea of the rate of change from the
analytic point of view. He also demonstrated his ideas by examples of
finding tangents to well-known plane curves including cycloid and spirial.
He gave another example of a plane curve with its algebraic equation in the
form

23 —ax® +axy —y* =0, (1.4.1)
to derive the fluxional equation
32%¢ — 2a 2 & + a(ty + zy) — 3y*y = 0. (1.4.2)

This gives the slope (or gradient) of the tangent to the curve at any

point (z,y) so that
dy _ i_ (32% — 2az + ay). (1.43)
de & (3y? — ax)

In his book, Newton not only developed a general method for finding
the instantaneous rate of change of one variable with respect to another,




Mathematics Before Leonhard Euler 23

but proved that area can be found by reversing the process of finding a rate
of change. For example, if the curve is y = ama™ !, the area under the
curve is z = azx™. In modern notation, this result can be written as

Area =z = / amz™ tdx = az™. (1.4.4)
0

He applied the method to calculate the area of many plane curves. Since
areas can be computed by the summation of infinitesimal areas, thus the
summations (or more precisely, the limits of sums) can be obtained by
reversing the process of differentiation. This is now known as the funda-
mental theorem of integral calculus. He also derived the correct formula for
the curvature of a given curve, namely,

i
= 1.4.5
i+ —
Newton obtained the area under the curve (dz/dr) = (1 + x?)~! in
terms of Gregory’s infinite series as
1 1
z:tanflx:x—gx?’—i—ng—---. (1.4.6)

Newton’s major idea of infinite series dealt with the discovery of the
general binomial theorem as well as the binomial infinite series which was
then applied to solve the problems of calculus. The study of infinite series
led to another very important method in mathematics which deals with the
solution of problems by means of successive approzximations. This means
that we first find an approximate solution of a problem, then based on this,
we look for a still better solution, or a second approximation; and so on,
each time getting a little better result to the exact solution. This process
can be continued to find the best approximate solution. For example, if
f(x) is a continuous function, naturally f(z + h) is approximately equal
to f(x) if h is small. This implies that f(x) is a first approximation to
f(x + h), and we may write this as

fle+h)=fl@)+--, (1.4.7)
where + - - - means that there is still something lacking to the exact solution.
To obtain a second linear approximation, we use the definition of the first
derivative, that is, f’'(z) is the limit of

flz+h)—f(=z)
h
Consequently, f(x+h)— f(z) is approximately equal to h f’(x) so the next
linear approximation (differentiation as linear approzimation) is

flx+h)=f(x)+hf(x)+ -, (1.4.9)

as h—0. (1.4.8)
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where + - -+ has the same meaning as before. Continuing the process, we
obtain the third approximation formula

2
f(z+h) :f(x)—i—hf’(x)—i—%f”(x)—i—--- . (1.4.10)

Thus, it is possible to continue this process so as to obtain still further
closer approximations. Eventually, this leads to the celebrated formula
known as Taylor’s series expansion of f(x 4 h) in the form

2 n
flx+h)=flx)+h f(z)+ %f”(x) +-- 4 %f(")(x) +-0, (1.4.11)

where f("(z) is the nth derivative of f(z). Brook Taylor (1685-1731),
a British mathematician knew this formula in 1712 without any rigorous
proof, but his name has become inseparably associated with the formula.
However, the Taylor series was known to another British mathematician,
James Gregory (1638-1675) in 1670. Indeed the Taylor formula (1.4.11)
originated from the Gregory—Newton interpolation formula for the calculus
of finite differences involved in simple and elementary functions, it was
apparently not discovered by Newton who, of course, knew some special
cases of it. Putting x = 0 in (1.4.11) and replacing h by z leads to the
famous Maclaurin series

f(z) = f(0)+2 £ (0) + %f”(O) +o J;L—TfW(O) +o 0 (1402)

This was deduced by Colin Maclaurin (1698-1746) who gave this special
case in his Treatise of Fluxions published in 1742 and stated that it was a
special case of Taylor’s result (1.4.11). In his Treatise, Maclaurin made a
serious attempt to establish the Newton’s calculus more rigorous. It was
a commendable effort but not successful due to the lack of convergence.
Maclaurin succeeded James Gregory as professor of mathematics at the
University of Edinburgh. On the other hand, Gregory discovered another
simple but important infinite series for y = tan=! z as

1 2 2T

tan” r=2— — 4+ — — —+---. 1.4.13
an” r =1 - + 3 - + ( )
This is universally known as Gregory’s series. The formula for 7 known as

Gregory’s formula is the special case of (1.4.13) by taking = 1 so that

T 11 1 1

e B e 1.4.14

4 3 + 5 7 + 9 ( )
This series was also discovered by Leibniz in 1674. Many mathematicians

including Newton, Leibniz, Gregory, Maclaurin and Euler were interested
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in infinite series. Omne of the major uses of infinite series beyond their
service in differentiation and integration was to find the series expansion
of functions such as trigonometric functions, exponential and logarithmic
functions, and 7 and e.

In his student days, Newton had made an extensive study of Descartes
La Geometrie which prepared him well to pursue advanced study and re-
search in geometry. In the late 1660s, he embarked on an extensive research
in algebraic equations and the method of coordinate geometry. Using the
method of coordinate transformations, he described fairly general geometri-
cal curves with many examples of cubic curves. He proved that the general
cubic equation containing ten terms can be expressed in the simpler form

ary? 4+ bx® + cx® + dy + ex + f = 0. (1.4.15)

In about 1690, Newton revised and expanded his earlier work on geom-
etry concerned with a large number of general theorems about cubic curves
and their asymptotes, and the associated conic sections. According to some
mathematical historians, it seemed that Newton had a comprehensive plan
to write three-volume treatise on the Geometria, but his work was never
completed.

Sir Isaac Newton’s discovery of the calculus and the fundamental math-
ematical and physical laws were published in his first book of Philosophiae
Naturalis Principia Mathematica (Mathematical Principles of Natural Phi-
losophy) which is considered one of the greatest single contribution ever
published in the history of physical sciences. This celebrated volume, usu-
ally called Principia or Principia Mathematica was completed over three
hundred years ago and communicated to the Royal Society in the Spring of
1686 and then published in 1687. In it Newton not only put forward a new
theory of how bodies move in space and time, but also developed the com-
plicated mathematics needed to analyze these motions. In addition, he also
profoundly formulated the laws of motion and a law of universal gravitation
according to which each body in the universe was attracted toward every
other body by a force that was stronger when bodies are more massive and
close to each other. It was exactly the same force that caused objects to
fall to the ground. According to his law, gravity causes the Moon to move
in an elliptic orbit around the Earth and the planets to follow elliptical
paths around the Sun. It was the first book by Newton to contain a unified
system of scientific principles explaining what happens on the Earth and
the Universe.

From the time of the publication of the Newton’s Principia and through-
out the eighteenth century, the Newtonian world-view was the remarkable
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influence on the British intellectual life, especially, in the fields of mathe-
matics, physics, astronomy and natural philosophy. It may be appropriate
to mention at least four British mathematical scientists including John Wal-
lis who was Newton’s contemporary and one of his closest friends, and Isaac
Barrow — Newton’s teacher and friend. Two other younger colleagues and
friends of Newton were Edmond Halley (1656-1742) and Roger Cotes (1682-
1716) who were closely involved in the editing and publication of Newton’s
greatest work. Wallis’ research on algebra and his two major books en-
titled Tractatus de sectionibus conicas and Arithmetica Infinitorum have
had tremendous influence on Newton’s discovery of the general binomial
theorem as well as the calculus. It was equally remarkable that Newton’s
teacher Barrow was fully responsible for providing adequate training and
help so that Newton can become the great mathematical scientist of all
time. Indeed, Barrow provided numerous and generous help to his young
student and friend in many different ways. For example, Barrow became
the first Lucasian Chair of Mathematics at Cambridge University in 1663.
In 1669, he suddenly resigned his Lucasian Chair and encouraged the Uni-
versity to offer this prestigious Chair to young Newton as Barrow strongly
believed that Newton was the most outstanding mathematical scientist for
this position.

In his independent discovery of the calculus, Leibniz began with a fairly
general approach to infinitely small increments in x and y, where dx is used
to indicate the difference of two infinitely close values of x, and dy to in-
dicate the difference of two infinitely close values of y. The limiting value

of the ratio (g—g) as 0x tends to zero is written as % or sometimes as D,y

or Dy, and is called the derivative of y at a point x of the curve y = f(x).
Geometrically, g—g = tan @ represents the slope of the tangent to the curve
y = f(x) at x, where the tangent at the point z makes an angle 6 with the
positive direction of the z-axis. If y = f(z), then its derivative of y at x
is often written as f’(x). Similarly, the derivative of a derivative, that is,

4 (j—i’) is written as % or f"(x) is called the second derivative. (The

prime notation or the symbol D is due to Leibniz.) The process can be
continued to give the nth derivative written as D"y = g;%{ or f(™(z). So,
in his discovery of the calculus, Leibniz first introduced the idea of symbolic
method and used the symbol % = D"y for the nth derivative, where n is a
non-negative integer. L’ Hospital (1661-1704), student of Johann Bernoulli
(1667-1748), asked Leibniz about the possibility that n is a fraction, “What

if n = %?”. In 1665 Leibniz replied, “It will lead to a paradox.” But he
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added prophetically, “From this apparent paradox, one day useful conse-
quences will be drawn.” Unlike Newton, Leibniz was more concerned with
operational formulas to develop the ideas, methods and results of the cal-
culus in the broad sense. For example, Leibniz proved the formulas for the
derivative of a product or quotient of two (or more) functions. His formula
for D™(uv), where u and v are functions of z, and a table of integrals pro-
vided the basic rules and formulas in calculus. Newton used his fundamental
concept of the fluxion to solve the problems of area and volume. According
to Newton, the fundamental theorem of calculus is a direct consequence of
his definition of integration, that is, the fluent can be calculated from the
fluxion. Indeed, he created the infinitesimal calculus and first formulated
the ideas of fluxions and fluent as early as 1664-1666, and soon developed it
into a general operational method. On the other hand, Leibniz first intro-
duced the concept of integration as summation, so his definition does not
imply the fundamental theorem of integral calculus which has to be proved.
This idea led him to formulate the general problem of finding the area of
the curve y = f(x) between the portion of the z-axis from z = a and x = b
and on the left and right by two straight line parallel to the y-axis. We
divide the z-axis into n equal subintervals so that each of the subintervals
along the x-axis is = which is the base of every one of the small rectangular
areas. The height of the average rectangle is represented by a perpendicu-
lar line drawn from a typical interior point of the interval dx to the curve.
Its value is, of course, f(x). The area of each such average rectangle is
f(z) - 6z, and the sum Y f(z)d(x) of these many small elements of area is
called the definite integral of the function y = f(x) between the values of
x = a and z = b. In the notation of Leibniz, the limiting value of the sum
representing the total area A is equal to the definite integral in the form

A= /b f(x)dz, (1.4.16)

where in the above sum, dz is replaced by dr and the sum by the integral as
dx — 0. Although he was in possession of his fundamental ideas, methods
and formulas from 1670 onwards, Leibniz discovered the differential and
integral calculus, as we have it today, during 1675 and 1685. His first paper
on the subject was published in Latin in the 1684 issue of the Acta Erudito-
rum Lipsienium which was the first monthly scientific journal in Germany
founded by Leibniz in 1682. So, his discovery of calculus soon became widely
known in Europe, largely due to voluminous work of the Bernoulli brothers,
Jakob and Johann, published in the Acta in the 1690s. Following the nota-
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tions and results of Leibniz, the first textbook on the differential calculus,
Analyse des infiniment petits was published by L’ Hospital in 1696.

It is clear from the discovery that the problem of the area is a typical
problem of the integral calculus, but there are many other major problems
such as the length of a given curve, the volume of a solid body of a given
shape, and the area of its curved surface. A typical problem in mechanics
is: How far will a particle moving with a given law of velocity go in a given
time?

Apparently, the differential and integral calculus seemed to be quite
different and independent subjects. Indeed, there is a very close relationship
between them. We now look at the formula (1.4.16) of the area very closely.
The area of a curve with one curved side y = f(z) and the base at = 0
and x =z is

Fla) = /0 f(@)da, (1.4.17)

where the upper limit of the integral is an arbitrary but fixed number, so
that the area F'(x) will depend on z. The natural question is: What is the
derivative of F(z)? According to the rule of derivative, we can write
F(z+h)— F(zx)
h
and proceed to the limit as h — 0. Obviously, F(x 4+ h) — F'(x) is the area
between the curved boundary, the z-axis and the vertical lines y = x and

(1.4.18)

y =x + h. If h is very small, an appropriate figure reveals that this area
h- f(x) so that
% F(z) = f(x), (1.4.19)

that is, the derivative of the integral is equal to the value, at the upper limit
of integration, of the integrand. Differentiation of the integral naturally
leads to the original function y = f(z). In other words, differentiation is
the inverse process of integration. This is a very major discovery, because
it is usually very much easier to do differentiation than integration.

In integral calculus, many problems involve the integration of (1/z) and
the integral of this function is log, * = Inz. Thus, the number e arises
naturally as the base of logarithms. More precisely,

1
/ - dz = log, x. (1.4.20)
1

If y = log, z, then z = e¥ so that Z_Z = 1. Sometime, formula (1.4.20) is
used as the definition of a logarithm. If this is made the starting point, the
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exponential function appears as the inverse of the logarithm function and
vice versa.

However, both Newton and Leibniz soon recognized some major logical
difficulties associated with the concept of infinitely small quantities and
the limiting value of the ratio of two such small quantities. It was the
celebrated French mathematician, Jean d’Alembert (1717-1783) who also
recognized the extraordinary power and usefulness of the calculus in finding
the solution of real-world problems. At the same time, he realized the lack
of rigor in the calculus, and made a serious attempt to revive the concept
of limit in order to give the logical foundation of the subject. In his fa-
mous Encyclopedia article on Différentiel published in 1754, d’Alembert
used his own limit concept to explain and justify the rules of differential
calculus. He presented the familiar chord and tangent figure and states
that: “The differentiation of equations consists simply in finding the limit
of the ratio of the finite differences of two variables included in the equa-
tion”. This was essentially no more than a reformulation of the ultimate
ratios of his predecessors. In 1768, d’Alembert published a short exposition
of his ideas entitled Sur les principes métaphysiques du calcul infinitésimal.
This elegantly written article served as a mathematical model of clarity and
logical proof. Its objective, to quote the closing sentence, was to “provide
a sufficient introduction to the subject for those who merely wish to have a
general, but correct, idea of its principles.” It was the nineteenth century
refinement of the fundamental idea of limit that eventually resolved the ba-
sic problems of the calculus. The mathematical foundations of calculus was
then firmly established in the first part of the nineteenth century through
the basic concepts of analysis such as function, continuity, limit, differentia-
bility, integrability and convergence notably due to Augustin-Louis Cauchy
(1789-1857) who was considered as one of the greatest mathematical scien-
tists in terms of rigor, clarity, elegance and generality. He is also regarded
as the father of the theory of functions of a complex variable and the theory
of mathematical elasticity.

Although Newton first discovered calculus in 1664-1666, and commu-
nicated his ideas and results through manuscripts and letters to selected
friends from 1666 onwards, however, he never published his manuscripts
during 1664-1686. In his two letters addressed to Leibniz in 1676, Newton
made no mention of his 1671 manuscript “Treatise of the method of series
and fluxions” which contained algorithms and rules of differential calculus
(similar to those of Leibniz) and their applications to problems of tangents
and curvatures of plane curves. Ultimately, his work on calculus was first
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published in his Principia in 1687. In the years between the publication of
the second edition of Principia in 1712 and the death of Leibniz four years
later, there had been a bitter controversy between the supporters of Newton
and those of Leibniz over the priority of the discovery of the calculus. As
President of the Royal Society, Newton himself participated in the priority
dispute and claimed that he discovered calculus before Leibniz. However,
it was soon realized that Newton’s notations, the terms fluent and fluzion
were far inferior to Leibniz’s elegant symbolism, the concepts of differentia-
tion and integration. Subsequently, mathematicians began using Leibniz’s
notations, the term integral instead of fluent, and derivative instead of fluz-
ion. So, the Newtonian terminology became almost obsolute in literature.
In his 700-page long book on calculus published in 1797, S. F. Lacroix
(1765-1843) expressed his views on calculus as: “... The school of Leibniz
had a marked superiority over that of Newton, due perhaps more to the
superiority of the former’s methods than to the genius of his disciples, the
Bernoulli’s .... When Newton’s writing were circulated on the Continent,
one could see that he was in possession of the method of fluxions well before
Leibniz had invented his differential calculus; but while it was possible for
Newton’s genius to deduce everything from his method that Leibniz could
deduce from his own, the latter could be applied much more easily than
the former.” At any rate, Newton might have avoided the priority dispute
of calculus with Leibniz if he had published his work immediately after its
completion in 1666. We now close this section with a special tribute to
both great men, Newton and Leibniz , for their independent discovery of
the calculus which, indeed, was the greatest intellectual achievement in the
history of mathematical sciences.

The greatest achievement of the seventeenth century mathematics was
calculus which, next to number theory, algebra, analytical geometry, and
projective geometry, is the greatest creation in all of mathematical sciences.
In addition, the methodology of modern science, Newtonian mechanics,
the universal law of gravitation, astronomy and celestial mechanics have
been around for some decades, and a wide variety of specific problems
have been solved by new and ingenious methods. All these marked the
beginning of the golden age of modern and useful mathematics and science.
Fully equipped with an enormous amount of knowledge and information,
Leonhard Euler appeared as the universal genius at the center stage of
eighteenth century mathematics and became ready to discover, unify and
disseminate scientific and mathematical knowledge.



Chapter 2

Brief Biographical Sketch and Career
of Leonhard Euler

“Since a general solution must be judged impossible from want
of analysis, we must be content with the knowledge of some
special cases, and that all the more, since the development of
various cases seems to be the only way to bringing us at last to
a more perfect knowledge.”

Leonhard Euler
“Read Euler, read Euler, he is the master of us all.”

P. S. Laplace

“... the study of Euler’s works will remain the best for different
fields of mathematics and nothing else can replace it.”

Friedrich Gauss

2.1 Euler’s Early Life

The old city of Basel in Switzerland has many great historical traditions.
It has Switzerland’s tallest building, Basler Messeturm: a beautiful and
historic Basel landmark. It is renowned for the sixteenth century Basel
Musseums which contain a diverse and wide spectrum of collections of fine
arts and represent the oldest collection in continuous existence. It is the
home of the oldest university of Switzerland, the University of Basel and be-
came very famous through the fame of extraordinary contributions of three
generations of the Bernoulli family. It was the birthplace of Leonhard Euler
who was born in April 15, 1707. His father, Paul Euler (1670-1745) was
a Calvinist priest and a gifted amateur mathematician. Paul Euler was a
student of Jakob Bernoulli (1654-1705) who was well known for his work
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on calculus and probability theory. Euler’s mother, Margarete Brucker was
also the daughter of a minister. Soon after Leonhard’s birth, his father
moved the family to a nearby village of Riehen, where Leonhard spent his
childhood there and grew up with two younger sisters. Paul Euler wished
his son to become a priest in the village church and so his son’s early edu-
cation and training focused on theology and related subjects. At the advice
of his father, Leonhard entered the University of Basel to study theology
and Hebrew. In 1720, at the age of thirteen, Euler graduated from the
University with philosophy major. Fortunately, Euler’s early extraordinary
ability in mathematics and physics were recognized by Johann Bernoulli
(1667-1748), then professor of mathematics at the University of Basel and
the greatest mathematician of the time, who gave him a private lesson in
mathematics in every Saturday afternoon. As Leonhard remembered:

“T was given permission to visit [Johann Bernoulli] freely every Sat-
urday afternoon and he kindly explained to me everything I could not
understand.”

Leonhard soon became a close friend of his tutor’s two sons, Daniel and
Nicholas, and it was under their influence at college that Euler achieved his
universal reputation. Johann Bernoulli soon realized that Leonhard would
become a great mathematician and convinced FEuler’s father to allow his son
to change to mathematics. So, Leonhard’s father reluctantly abandoned
theological ambitions for his exceptionally gifted son. However, Leonhard’s
early training and parential influence had struck a deep chord and so he
remained a devout Calvinist all his life. As we will soon see, Euler’s destiny
as an universal mathematician, his life and career path were closely linked
to the Bernoulli family. Once Euler himself expressed his deep gratitude to
Johann Bernoulli by saying:

“I soon found an opportunity to gain introduction to the famous pro-
fessor Johann Bernoulli, whose good pleasure it was to advance me further
in the mathematical sciences. True, because of his business he flatly re-
fused me private lessons, but he gave me much wiser advice, namely to get
some more difficult mathematical books and work through them with all
industry, and whenever I should find some check or difficulties, he gave me
free access to him every Saturday afternoon and was so kind as to elucidate
all difficulties, which happened with such greatly desired advantage that
whenever he had obviated one check for me, because of that ten others dis-
appeared right away, which is certainly the way to make a happy advance
in the mathematical sciences.”

At the age of 13, Leonhard enrolled in the department of Arts at the
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University of Basel to receive a general education and training. In 1724,
at the age of 17, Leonhard received his Master’s degree after writing a
thesis comparing the natural philosophy of René Descartes with that of
Isaac Newton, and then began his independent studies and research in
mathematics. At the age of nineteen, he submitted two dissertations to the
Paris Academy of Science, one on the masting of ships, and the other on
science of sound. This work marked the beginning of his splendid research
career in mathematics and science.

2.2 Euler’s Professional Career

Euler’s first research paper on the construction of isochronous curves in a
resisting medium, and his second paper on method of finding reciprocal
algebraic trajectories were published in 1726 and 1727 respectively in the
international journal Acta Eruditorum. In 1727, Euler submitted a memoir
to win the prize of the Paris Academy concerning the masting of sailing
ships and although he was unsuccessful, he received an honorable men-
tion. However, subsequently, he won the same prize at least twelve times.
With the encouragement of Johann Bernoulli, Euler applied for the vacant
professorship of physics at the University of Basel, but he did not get the
position, partly because he was too young for such a high position. After
the establishment of the Royal Academy of Sciences at St. Petersburg by
the emperor Peter the Great, the two eldest sons of Johann Bernoulli were
invited to join the Academy in 1725. In the autumn of 1725, Johann’s two
sons, Nicholas (1695-1726) and Daniel (1700-1782) went to St. Petersburg,
Russia. Euler maintained regular contact with them in St. Petersburg.
Unfortunately, Nicholas was drowned in July of 1726. Daniel Bernoulli
joined the newly established Imperial Russian Academy of Science in St.
Petersburg. With the support of Daniel, Euler received an offer from the
Russian Academy for the position of Medical Associate, and then left his
motherland to join this new job at the St. Petersburg Academy in 1727. In
a few months, he managed to get transferred to the mathematics-physics
section of the Academy as permanent member in 1727. He continued to
conduct his research with Daniel Bernoulli mainly in mechanics and physics,
particularly, in hydrodynamics. In St. Petersburg, Euler was surrounded
by a group of famous mathematical scientists including Daniel Bernoulli,
an applied mathematician, and Jacob Hermann, an analyst and geometer.
They made the unique contribution to the flowering of Euler’s mathematical
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genius. Although Euler’s genius manifested itself in his early work, his in-
debtedness to classical and contemporary mathematical scientists was also
more plainly evident than in his later contributions.

In 1733, Daniel returned to his home country, Switzerland to occupy
the prestigious Basel Chair of Mathematics. At the age of 26, Euler was
selected to serve as the leading mathematical position in the Academy.
Christian Goldback (1690-1764) and Euler began to make correspondence
in 1729 by letters on mathematical problems including algebra and num-
ber theory. Indeed, Euler’s enthusiasm and interest in algebra, geometry,
geometrical optics, and number theory originated from Goldback’s corre-
spondence which he continued until Goldback’s death in 1764. Goldback
was a kind of academic mentor for Euler, and it was he who introduced
Euler to number theory and geometry through the works of Pierre de Fer-
mat. During his fourteen-year stay from 1727 to 1741 in St. Petersburg,
Euler published a very large amount of new and original research in math-
ematics and physics, and also wrote many elementary and advanced books
on mathematics. One of the major unsolved problems of the time was the
so called Basel problem (after the name of the City of Basel) which was
formulated by Pietro Mengoli (1625-1686) in 1644. Both famous Jakob and
Johann Bernoulli brothers came from the City of Basel, and they made
serious but unsuccessful attempts to solve this classical problem. During
his stay at St. Petersburg, among his many remarkable discoveries, three
mathematical formulas can be quoted as an epitome of what Euler discov-
ered: One was his renowned solution of the Basel problem of finding the
sum of the squares of the reciprocals of the integers, that is,

1 1 1 2
§+§+3—2+---—C(2)—E.

Euler’s work on the famous zeta function ((s) for real s defined by the
infinite series

(2.2.1)

((s)=> ni (2.2.2)

began around 1730 with his first discovery of the value ((2) = (72/6) in 1735
and he continued his research for the value {(2n) for the natural number
n > 1. Aigner and Ziegler (2001) reported two proofs of the Basel problem
and Chapman (1999) collected fourteen proofs of the problem.

Almost 110 years before Bernhard Riemann’s (1826-1866) discovery of
¢(s) for complex s, using the summation of divergent series and mathemat-
ical induction, Euler in 1749 discovered a remarkable functional equation
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for the zeta function in the form
_s S _1-—s 1—s
a5 (5) ((s)=n"=T ( > ) C(1—s), (2.2.3)

where I'(s) is the Euler gamma function which was also invented by Euler
in 1729 as a generalization of the factorial function. When s = 1, the value
¢(1) led him to discover the universally known as the divergent harmonic

series (as any term in it is the harmonic mean of two neighboring terms)

(1 =>

His study of the harmonic series enabled him to establish two more re-

. (2.2.4)

S|

markable results. The first one was the discovery of the new mathematical
constant which is now known as the Fuler universal constant ~ given by

1 1
v = lim (1 + 5t~ —log, n) — 0.577215665... (2.2.5)

n—oo

Euler calculated this constant up to 16 decimal places. Although the nu-
merical value of v is known today to hundreds of decimal places. However,
it is not known even today whether v is rational or irrational.

The second result dealt with wonderful and unexpected connection be-
tween number theory and analysis. Using a fairly simple argument, Euler
proved in 1737 that the divergence of the harmonic series implies that the
number of primes is infinite and vice-versa. In modern notation, this result
reads

00 1 1 —1
1y => ~ = 11 (1 - 5) , (2.2.6)
n=1 P
where the product is taken over all primes p. However, this is an invalid
identity as Euler paid no attention to convergence of this harmonic series
and the infinite product in (2.2.6). A few years later, Euler generalized his
identity (2.2.6) and discovered another remarkable identity that expresses
the zeta function as an infinite product extended over prime numbers only.
More precisely, he proved a strikingly new theorem, for s > 1,
00 1 1 —1
() =" — = 11 <1 - E) : (2.2.7)
n=1 p
where the infinite product in taken over all prime numbers p. Thus, Euler’s
theorem clearly demonstrates that the zeta function plays a fundamental
role in number theory and laid the modern foundations of the analytic
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number theory. More remarkably, the Euler theorem may be considered as
an analytical statement of the Fundamental Theorem of Arithmetic which
states that any natural number greater than one can be uniquely expressed
as a product of primes.

Two of his greatest discoveries were the Fuler formulas

et = cosz +isinz. (2.2.8)
In particular, x = 7 and 27 led to the legendary formulas
e™=—-1 or e™4+1=0 and €™ —-1=0. (2.2.9ab)

These simple formulas beautifully and unexpectedly relate six most funda-
mental constants e, i, m, 0, 1 and —1 in mathematics and science. Before
Euler, a number of great mathematicians made an attempt to establish
exact formulas for the computation of the transcendental numbers e and
w. In retrospect, Euler first discovered power series representations and
continued fraction expansions of these numbers and developed a clear and
original treatment of using methods of analysis in order to understand the
properties of these numbers.

Of particular interest is Euler’s remarkable work on the formulation of
many problems in solid and fluid mechanics in mathematical language and
his development of analytical methods of solving these mathematical prob-
lems. Once Joseph Louis Lagrange (1736-1813) made a delightful statement
about Euler’s work in mechanics, “The first great work in which analysis
is applied to the science of movement.” More remarkable was Euler’s ex-
tensive study of ordinary and partial differential equations in his work in
mechanics and mathematical physics. He first introduced the concept of
an integrating factor and gave a general treatment of linear ordinary dif-
ferential equations with constant and variable coefficients in 1739 with a
careful distinction between complimentary function, particular and general
solutions. He also considered the possibility of reducing second order equa-
tions to first order equations by a suitable change of variables. He also
made some major contributions to the method of power series solutions,
and first developed the technique for approximating the solution of the
equation % = f(z,y) with initial conditions x = xo and y = yo and its
extension to second-order differential equations.

Considerable attention to the second-order partial differential equations
was given by many great mathematical scientists including, Euler, Daniel
Bernoulli, Jean d’Alembert, Lagrange, and Joseph Fourier (1768-1830).
Some frequently occuring equations in applied mathematics and physics in-
clude the wave equation, the potential (Laplace) equation and the diffusion
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(Fourier) equation. The classic wave equation, or a generalization of it, al-
most inevitably occurs in any mathematical study of physical phenomenon
involving the propagation of waves in a continuous medium. For example,
the mathematical analysis of sound waves, water waves, shock waves, and
electromagnetic waves are all based on this equation. Among others, Eu-
ler made some major contributions to the solution of wave equation and its
physical features in 1750. He also first derived the Laplace equation in 1752
in his study of hydrodynamics. His work on vibrating elastic membranes
led him to the famous Bessel equations which he solved in terms of Bessel
functions. He also made important contributions to the theory of Fourier
series and gave the first systematic treatment of the calculus of variations.

It was Euler who invented a series of mathematical symbols including
the natural logarithmic base e, the imaginary quantity ¢ = /—1, the sym-
bol A representing a finite difference, and ¥ denoting summation. These
symbols have universally been adopted in mathematical sciences. In ad-
dition, he first introduced a large number of notations including f(z) for
a function of x, and first treated e*, sinx, cosz, logz as functions of x
in calculus and analysis, A, B, C and a, b, ¢ for the angles and sides of
a triangle in geometry and trigonometry. Even today, all of his notations
and symbols are true historic landmarks in mathematics and science and
are still considered as a unique mark of his genius. In his 1748 two-volume
remarkable treatise on Introductio in analysin infinitorum, Euler first in-
troduced the concept of a function as a correspondence of values and then
gave the following working definition:

“A function of a variable quantity is an analytic expression composed
in any way whatsoever of the variable quality and numbers or constant
quantities.”

Although this is not a precise and modern definition of a function, Euler
continuously used his definition to study polynomials, exponential, trigono-
metric and logarithm functions and their properties. In his Introductio, he
subsequently recognized functions as the fundamental building blocks of
real and complex analysis. He then considered mathematical analysis as
the study of algebraic, trigonometric, exponential and transcendental func-
tions facilitated by differentiation and integration. After the discovery of
the imaginary number i, Euler independently recognized the need for a
more extensive investigation of complex numbers in the form a + ¢b. In
1749, Euler made an attempt to give a first unsatisfactory proof of the
Fundamental Theorem of Algebra which states that an nth degree polyno-
mial equation f(z) = 0 with real or complex coefficients has at least one
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root, real or complex, where z = x + iy is a complex number. Using the
method of functions of a complex variable, FEuler first successfully derived
the Cauchy—Riemann equations

Uy = Uy, Vg = —Uy, (2.2.10)
where f(z) = u(x,y) + iv(z,y) is a complex function of a complex vari-
able z. Almost simultaneously, he successfully applied these equations to
investigate the problems of fluid and solid mechanics. These equations be-
came the most fundamental basis for the subsequent rigorous development
of the theory of functions of a complex variable primarily due to Friedrich
Gauss (1777-1855), Augustin-Louis Cauchy, Karl Weierstrass (1815-1897)
and Bernhard Riemann during the nineteenth century. Stimulated by the
work of Johann Bernoulli on orthogonal trajectories of a family of curves
in 1698, Euler continued his research further on this topic which led to the
beginnings of the theory of conformal mappings in complex analysis. The
power and beauty of conformal mappings became a powerful tool for the
solutions of problems in fluid mechanics, heat conduction and electromag-
netic theory in the late 1800s.

By the year 1730, Euler had already achieved a considerable reputation
as a pure and applied mathematician. Many of his contemporaries thought
of his early work as his most significant mathematical achievement. In the
same year, Euler was selected to serve as Professor of Physics at St. Peters-
burg Academy and in 1733, he succeeded his close friend Daniel Bernoulli as
the Chair of Mathematics, and became in charge of the Geography Depart-
ment, where he was actively involved in cartographic research work jointly
with the well-known French astronomer and geographer, J. N. Delisle (1688-
1768) who was invited by the Russian czar Peter the Great to St. Petersburg
Academy to create and run the school of astronomy. Because of his secured
job in the Academy and his great reputation as the leading mathematician
in Europe, Euler decided to settle in Russia and then married Catharina
Gsell (1707-1773) in 1734, the daughter of a Swiss artist and painter then
working in Russia. They had thirteen children — eight died in infancy,
and only three sons, Johann-Albrecht (1734-1800), Carl (1740-1790) and
Christopher (1743-1808) and two daughters, Catherine-Elena (1741-1781)
and Charlotte (1744-1780) survived.

At the tenth anniversary of his arrival in St. Petersburg, Euler wrote a
letter to the President of the St. Petersburg Academy of Sciences in 1737
indicating his major job responsibilities as follows:

“According to my conditions of service in the Imperial Academy of
Sciences, I am obliged to fulfil the following:
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1. To attend the meetings of the Conference, which I fulfil assiduously
and always have in readiness articles to read there.

2. To give lectures to students on the higher branches of mathemat-
ics. This also, whenever students wanting to study that subject present
themselves, I carry out according to their capabilities.

3. I have also been commissioned to participate in the work on the
geography of Russia, and here I also work as far as my strength and my
duties allow.

As far as my other labors are concerned at present, and also in the
future, I am now working on an arithmetic to be used in the Academy’s
gymnasium. Apart from that, I have the intention, if my other activities
do not interfere, to bring to completion several works in hand, having to
do with music, statics, the analysis of infinities, and the motion of bodies
in water.”

It is evident from this letter that research, teaching and service have
been his major job responsibilities three hundred years ago as many uni-
versities professors do regularly even today. However, Euler’s teaching load
was relatively light at the Academy, but his research contributions far ex-
ceeded the normal mathematician by any standard. He quickly became
the legendary figure in the world of mathematical sciences, both on the
discovery of new knowledge and its dissemination through publications,
presentations and writings.

Euler was extremely proficient in many languages, especially in Latin,
French, German and Russian as he efficiently and effectively used these
languages in writing research papers, books and correspondence. He was
extremely knowledgeable about the ancient history of mathematics and sci-
ence and had phenomenal memory of historical events and people. Amaz-
ingly, he had unusual knowledge of other subjects including botany, chem-
istry and medicine, even though he did not work on these subjects.

Perhaps, among other things, Euler’s best known research in this pe-
riod was his original formulation and solution of the famous problem of
the Seven Bridges of the Konigsberg in 1736. This marked the beginning
of a new area of mathematics known today as graph theory. In 1736, Eu-
ler published his two-volume large treatise Mechanica sive motus scientia
analytice exposita (Mechanics or the Science of Motion, erpounded ana-
lytically). This work dealt with a comprehensive treatment of almost all
aspects of analytical mechanics including the mechanics of particles, rigid,
flexible and elastic bodies as well as fluid dynamics, celestical mechanics
and ballistics. This work led him to formulate the basic formulation of
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mechanics, in general and Newtonian mechanics, in particular. After win-
ning the Grand Prix of the Paris Academy in 1738 and 1740, Euler became
an eminent mathematical scientist in the whole Europe. Although he was
always active and productive in mathematical sciences, his main relaxation
was music. He was then actively involved with advanced study and research
in the theory of music and publication of his treatise An attempt at a new
theory of music, clearly expounded on the most reliable principles of har-
mony in 1739, and several music-theoretical manuscripts during 1766-1768.
Evidently, Euler’s music-theoretical works were a modest part of his total
mathematical and scientific legacy. It was during this first St. Petersburg
period that he became blind in the right eye in 1738.

Unfortunately, in 1740s the political conditions of Russia became very
unstable as the Russian government passes into the hands of those who
did not want to provide sufficient support for scientific research. Euler be-
came very unhappy and concerned about his future in the St. Petersburg
Academy. In the meantime, Frederick the Great of Prussia succeeded to the
Prussian throne in June 1740, and invited Euler to serve as Director of the
Mathematics Section of the newly organized Berlin Academy of Sciences
(originally founded by G. W. Leibniz in 1700) with a complete academic
freedom of research. In 1741, Euler left St. Petersburg to join the position
at the Berlin Academy as a world-renowned 34-year old research mathe-
matician, although he continued to receive pension from the St Petersburg
Academy. While maintaining regular professional contacts and correspon-
dence with the St. Petersburg Academy, he remained in Berlin for a period
of 25 years from 1741 to 1766 and completed his greatest work there in dif-
ferent fields of physics, mechanics, pure and applied mathematics. During
his stay in Berlin, he also completed his 1744 masterpiece, the memoir on
the calculus of variations, known as Methodus inveniendi lineas curvas maz-
imi minimive proprietate gaudentes sive solutio problematis isoperimatrici
latissimo sensu acceptl (A method for discovering curved lines that enjoy a
maximum or minimum property, or the solution of the isoperimetric prob-
lem taken in its widest sense). This effectively created a new branch of
mathematics which is known today as the Calculus of Variations. Its pub-
lication in 1744 led to his election to the Royal Society of London and to the
Paris Academy, among many other honors and awards. His theorological
conviction led him to believe that all natural phenomena operate in such
a way that some combination of physical variables is either minimized or
maximized, and then he made the following delightful statement:

“For since the fabric of the Universe is most perfect and the work of a
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most wise Creator, nothing at all takes place in the Universe in which some
rule of maximum or minimum does not appear.”

At the end of the seventeenth century, many important questions and
problems in geometry and mechanics involved minimizing or maximiz-
ing of certain integrals for two reasons. The first of these were several
existence problems, such as, Newton’s problem of missile of least resis-
tance, Bernoulli’s isoperimetric problem, Bernoulli’s problem of the brachis-
tochrone (brachistos means shortest, chronos means time), the problem of
minimal surfaces due to Joseph Plateau (1801-1883), and Fermat’s principle
of least time. Indeed, the variational principle as applied to the propagation
and reflection of light in a medium was first enunciated in 1662 by one of
the greatest mathematicians of the seventeenth century, Pierre de Fermat.
According to his principle, a ray of light travels in a homogeneous medium
from one point to another along a path in a minimum time. The second
reason is somewhat philosophical, that is, how to discover a minimizing
principle in nature. The following 1744 statement of Euler is characteristic
of the philosophical origin of what is known as the principle of least action
as a guiding principle in nature:

“As the construction of the universe is the most perfect possible, being
the handiwork of all-wise Maker, nothing can be met with in the world
in which some maximal or minimal property is not displayed. There is,
consequently, no doubt but all the effects of the world can be derived by
the method of maxima and minima from their final courses as well as from
their efficient ones.”

In the middle of the eighteenth century, a famous French scientist, Pierre
de Maupertuis (1698-1759) stated a fundamental principle known as the
principle of least action, as a guide to the nature of the universe. A still
more precise and general formulation of Maupertuis’ principle of least action
was given by Lagrange in his Analytical Mechanics published in 1788. He
formulated it as

ta
58 = 5/ (2T) dt = 0, (2.2.11)
ty

where T' is the kinematic energy of a dynamical system with a constraint
that the total energy, (T + V), is constant along the trajectories and V is
the potential energy of the system. He also derived the celebrated equation
of motion for a holonomic dynamical system

d (0T\ T
4 <a_q¢) e (2.2.12)
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where ¢; are the generalized coordinates, ¢; is the generalized velocity, and

Q@; is the force. For a conservative dynamical system, Q; = —g;/i, V =
V(a), g—(‘; =0, then (2.2.12) can be expressed in terms of the Lagrangian,
L=T-V, as

d (0L oL

— == —-—5—=0. 2.2.13

This principle was then effectively reformulated by Euler in a way that
made it useful in mathematics and physics.

The work of Lagrange remained unchanged for about half a century
until William R. Hamilton (1805-1865) published his research on the general
method in analytical dynamics which gave a new and very appealing form to
the Lagrange equations. Hamilton’s work also included his own variational
principle. In his work on optics during 1834-1835, Hamilton elaborated a
new principle of mechanics known as Hamilton’s principle describing the
stationary action for a conservative dynamical system in the form

t1 ty
5A=5/ (T—V)dtzzS/ Lt =0, (2.2.14)
to to

Hamilton’s principle (2.2.14) readily led to the Lagrange equation (2.2.12).
In terms of time ¢, the generalized coordinates g;, and the generalized mo-
menta p; = (OL/¢;) which characterize the state of a dynamical system,
Hamilton introduced the function

H (qi,piyt) = pigi — L (qi,pis t), (2.2.15)

and then used it to represent the equation of motion (2.2.12) as a system
of first order partial differential equations

G; = gZ, Pi = —gZ (2.2.16)
These equations are known as the celebrated Hamilton canonical equations
of motion, and the function H (¢;,p;,t) is referred to as the Hamiltonian
which is equal to the total energy of the system. Following the work of
Hamilton, Karl Gustav Jacob Jacobi (1804-1851), Mikhail Ostrogradsky
(1801-1862), and Henri Poincaré (1854-1912) put forth new modifications
of the variational principle. Indeed, the action integral S can be regarded
as a function of generalized coordinates and time provided the terminal
point is not fixed. In 1842, Jacobi showed that S satisfies the first order
partial differential equation

oS S
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which is known as the Hamilton—Jacobi equation. In 1892, Poincaré defined
the action integral on the trajectories in phase space of the variable ¢; and
Di as

t1

S = [pidi — H (pi, gi)] dt, (2.2.18)

to
and then formulated another modification of the Hamilton variational prin-
ciple which also yields the Hamilton canonical equations (2.2.16). From
(2.2.17) also follows the celebrated Poincaré-Cartan invariant

I= ]{ (pidq; — Ht), (2.2.19)
C

where C' is an arbitrary closed contour in the phase space.

Indeed, the discovery of the calculus of variations in a modern sense
began with the independent work of Euler and Lagrange. The first neces-
sary condition for the existence of an extremum of a functional in a domain
leads to the celebrated Euler—Lagrange equation. This equation in its var-
ious forms now assumes primary importance, and more emphasis is given
to the first variation mainly due to its power to produce significant equa-
tions than to the second variations which is of fundamental importance in
answering the question of whether or not an extremal actually provides a
minimum (or a maximum). Thus, the fundamental concepts of the cal-
culus of variations were developed in the eighteenth century in order to
obtain the differential equations of applied mathematics and mathematical
physics. During its major early developments, the problems of the calcu-
lus of variations were reduced to questions of the existence of differential
equations problems until David Hilbert developed a new method in which
the existence of a minimizing function was established directly as the limit
of a sequence of approximations.

Considerable attention has been given to the problem of finding a neces-
sary and sufficient condition for the existence of a function which extremized
the given functional. Although the problem of finding a sufficient condi-
tion is a difficult one, Legendre and Jacobi discovered a second necessary
condition and a third necessary condition respectively. Finally, it was Karl
Weierstrass who first provided a satisfactory foundation to the theory of
calculus of variations in his lectures at Berlin between 1856 and 1890. His
lectures were essentially concerned with a complete review of the work of
Legendre and Jacobi. At the same time, he reexamined the concepts of
the first and second variations, and looked for a sufficient condition as-
sociated with the problem. In contrast to the work of his predecessors,
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Weierstrass introduced the new ideas of ‘strong variations’ and ‘the excess
function’ which led him to discover a fourth necessary condition and a satis-
factory sufficient condition. Some of his outstanding discoveries announced
in his lectures were published in his collected work. At the conclusion of
his famous lecture on ‘Mathematical Problems’ at the Paris International
Congress of Mathematicians in 1900, David Hilbert, perhaps the most bril-
liant mathematician of the late nineteenth century, gave a new method for
the discussion of the minimum value of a functional. He obtained another
derivation of Weierstrass’s excess function and a new approach to Jacobi’s
problem of determining necessary and sufficient conditions for the existence
of a minimum of a functional; all this without the use of the second varia-
tion. Finally, the calculus of variations entered the new and wider field of
‘global’ problems with the original work of George D. Birkhoff (1884-1944)
and his associates. They succeeded in liberating the theory of calculus of
variations from the limitations imposed by the restriction to ‘small varia-
tions’, and gave a general treatment of the global theory of the subject with
large variations.

About eight years after his arrival to Frederick’s court from St Peters-
burg, Euler received a royal assignment directly from Frederick to develop
mathematics for a proposal of the Berlin lottery similar to that of the Ge-
noese lottery in Italy. In fact, Euler started working on the probability
theory related to the Genoese lottery when Frederick’s letter of Septem-
ber 15, 1749 arrived along with a copy of a proposal for the Berlin lottery
which was made by an Italian businessman named Roccolini. Euler ex-
panded mathematical analysis of the Genoese lottery and wrote several
papers on the calculus of probability with applications to mathematical
games, insurance and gambling, the theory of risk, mathematical statistics
involving observational error and the foundation of life insurance. There
was also a correspondence between Euler and Frederick in 1763 concerning
the lottery proposal, quite similar to the one of 1749. At the royal request,
FEuler became very interested in various aspects of the Genoese lottery sys-
tem and came up with an improved lottery system. Eventually, the Berlin
lottery was introduced in Germany in 1763 to raise additional revenue for
the King Frederick. In addition to lottery, Euler was especially interested
in more general mathematical problems of winning certain games involving
coins, dice or cards. In connection with such problems, there was a para-
dox, known as the St. Petersburg Paradox. One version of this paradox
can be stated as follows. A person is to toss an ideal coin until he throws
a head. If he throws head at the nth throw, and not before, he must win
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an amount of £2". What is the expected value? What is the value of the
game? Clearly, the probability of n heads in a row is p(n) = (3)" and the
expected value is

8

0

n
> npm) =3 5
n=1 n=1

and the value of the game is
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Although the expected value is 2, but the value of the game is infinite so
that nobody would pay an infinite amount of money to play the game.

In 1745, in response to another royal assignment by Frederick the Great,
Euler translated the 1742 remarkable book on New Principles of Gunnery
written by a great British applied mathematician, Benjamin Robins (1707-
1751) who was born in the same year as Euler. His German translation of
Robins’ 150-page book with a large and extensive mathematical commen-
taries became over 700-page monumental book. Through their ordinary
works, Euler and Robins revolutionized experimental, mathematical and
engineering research in ballistics of the 18th and 19th centuries. Using
air-resistance values based on Robins’ experimental measurements, Euler
obtained the solution of the equations of subsonic ballistic motion in 1753,
and presented some of his numerical results into convenient ballistics ta-
bles. This was the first published Euler’s analysis of projectile trajectories
to incorporate empirical air-resistance values. The King Frederick was very

much interested in the modern research in ballistics in order to increase
the mathematical, scientific and engineering research and education of his
artillery officers. Frederick the Great praised Euler’s new and remarkable
ballistics research effort as it provided a tremendous help for the Prussian
artillery during the French Revolutionary War. In addition to Euler’s orig-
inal work on the theory of probability and ballistics research, he was also
involved with earlier royal assignment on the design of a new hydraulic
system for Frederick’s summer palace, Sans-Souci.

Based on his many research contributions to physics and astronomy —
especially celestial mechanics, Euler published his work on the theory of
lunar motion in 1753 and was directly responsible for the organization of
the St. Petersburg Observatory of the first ever Time Service in Russia
in collaboration with J. N. Delisle. Based on his extensive use of his St.
Petersburg experience, Euler was also fully responsible for the reconstruc-
tion of the Berlin Observatory with new instruments 1744 similar to those
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in the St. Petersburg Observatory. In collaboration with the Berlin as-
tronomers, in 1748 Euler made observations of a ring-shaped solar ellipse
in the course of which the question of the existence of a lunar atmosphere
was resolved once for all — the same question was raised by Euler and his
St. Petersburg scientific colleagues in 1729. These researchers and other
assignments illuminate several admirable qualities of Euler’s personal char-
acter: his vast mathematical and scientific imagination, his sense of duty
and devotion, his tremendous research expertise to solve mathematical and
scientific problems for the benefit of the society, and his remarkable ability
to delight in mathematical recreation. Unfortunately, works of Euler were
not fully appreciated by the King Frederick — even though the King was
aware of Euler’s great scientific talent and creativity.

Euler also completed his works on the theory of ships, shipbuilding
and navigation which culminated in the publication of Scientia navalis seu
tractatus de construendis as dirigendis navibus in two volumes in 1749.
Walter Habicht (see Burckhardt et al. (1983)) described the fundamental
importance of this work as follows:

“Following the Mechanica sive motus scientia analytice exposita which
appeared in 1736, it [the Scientia navalis...] is the second milestone in the
development of rational mechanics, and to this day has lost none of its
importance. The principles of hydrostatics are presented here, for the first
time, in complete clarity; based on them is a scientific foundation of the
theory of shipbuilding. In fact, the topics treated here permit insights into
all the related developments in mechanics during the eighteenth century.”

In 1750, Euler discovered his famous and universal polyhedra formula

V-E+F=2, (2.2.20)

where V' is the number of vertices, £ is the number of edges and F' is
the number of faces of a regular polyhedra and made a serious attempt
to prove it. In addition to his enormously busy research activities, Euler
accepted numerous other duties that included supervising the observatory
and botanic gardens, selecting staff, and managing budgets, calendars and
maps which provided a new source of income for the Academy. In spite of
Euler’s tremendous contributions to the Berlin Academy in many different
ways, Frederick the Great appointed one of the great French scientists,
Pierre de Maupertuis as President of the Berlin Academy of Sciences in
1746. Maupertuis served the Academy as its President until his death
in 1759. During his term as President, Maupertuis maintained a cordial
relationship with Euler, and he once said that Euler demonstrated over
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many years by “his honesty, ability and zeal” that he was a most qualified
and competent academic administrator of the Academy. In 1759, Euler took
over the management of the Berlin Academy under the direct supervision of
the King Frederick and did a magnificent job. Even though Euler was very
loyal to the King, the King did not fully trust and appreciate Euler’s work.
When King Frederick offered the Presidency of the Academy to d’Alembert
who was Euler’s chief rival in scientific matters, Euler became increasingly
concerned about his future in Berlin even though his 25-year stay in Berlin
can be considered as the second golden period of his life.

However, in 1766, at the age of 59, Euler decided to move back to St
Petersburg at the cordial invitation of Empress Catherine the Great of
Russia who subsequently treated him as a visiting royalty. After his arrival
at St. Petersburg with his eldest son, Johann-Albrecht in 1766, Johann was
appointed professor of physics and academician of the Petersburg Academy
of Sciences. With the generous support from the Russian government,
Leonhard Euler was given a very large and beautiful house on the banks of
the river Neva, conveniently located near the premises of the St. Petersburg
Academy of Sciences. Euler’s second son Carl was a medical doctor. After
he returned to St. Petersburg with his father, Carl was appointed medical
doctor to Empress Catherine II of Russia and a member of the State Medical
Office, and from 1772 he served as a doctor of the Petersburg Academy of
Sciences. Carl was also involved in research on planetary motion with his
father and received a research prize from the Paris Academy of Sciences
in 1760. His third son, Christopher was born in Berlin and became the
Major General of artillery and Director of the Sesterbetsk factories at the
court of Empress Catherine II, and was also well known for his research on
astronomical observations.

In 1773, Euler invited Nickolai Ivanovich Fuss (1755-1826) to come to
St. Petersburg from Basel in order to work as his major research assis-
tant. After his arrival at St. Petersburg, Fuss lived in Euler’s home for a
period of ten years and became Euler’s family friend and closest research
assistant who faithfully helped him prepare about 355 research papers and
books for publication during 1773-1783. Nickolai remained a very loyal
assistant of Euler throughout his life. In view of his own outstanding re-
search contributions to mathematics, mechanics and astronomy, Fuss was
elected academician of St. Petersburg Academy in 1783 and he then mar-
ried a granddaughter of Euler in 1784. He was then selected to serve as
permanent secretary of the Petersburg Academy from 1800-1826.

During 1769-1771, he published his three-volume textbook on Dioptrics.
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This work dealt with his extensive research in optical sciences and optical
instruments including microscopes and telescopes. Euler’s goal was to im-
prove in many different ways optical instruments in particular telescopes
and microscopes so that they could be brought to highest degree of perfec-
tion. His contributions to the fields of physical and geometrical optics was
concerned with the problem of diffraction of light in the atmosphere. Some
of Euler’s work is best described by Walter Habicht in 1983 as stated by J.
J. Burckhardt (1983):

“He began by deriving a very general differential equation; naturally, it
turned out not to be integrable — it would have been a miracle had that not
happened. Then he searched for conditions which make a solution possible,
and finally he solved the problem in several cases under practically plausible
assumptions.

Euler frequently expressed the opinion that the phenomena in optics,
electricity and magnetism are closely related (as states of the ether), and
that therefore they should receive simultaneous and equal treatment. This
prophetic dream of Euler concerning the unity of physics could only be re-
alized after the construction of bridges (experimental as well as theoretical)
which were missing in Euler’s time. These were later built by Faraday, W.
Weber and Maxwell.”

Euler wrote many great research treatises and textbooks of very high
quality. His career involved relatively no teaching of mathematics or physics
that almost many mathematical scientists have done regularly over the
years. But his whole professional life was devoted to mainly research and
writings at the Imperial Academy of Sciences at St. Petersburg and the
Royal Academy of Sciences in Berlin. However, he seemed to have had
tremendous success at writing many books and some student teaching at
all levels. Perhaps, it may be appropriate to mention some of his great
textbooks including Institutiones Calculi Differentialis, published in 1755,
on differential calculus, and Institutiones Calculi Integralis in three vol-
umes, published in 1768-1770, on integral calculus. Although almost all
of his differential and integral calculus books were somewhat at elemen-
tary levels, the third volume of his integral calculus contained a largely
expanded mathematical analysis of the calculus of variations which Euler
himself discovered in 1744. In celebrating the 275th anniversary of Euler’s
birth in October 1983 in the Great Hall of the Moscow House of Scien-
tists, A. P. Yushkevich delivered a lecture on “Leonhard Euler: His life and
work” describing many aspects of Euler’s life and voluminous contributions
to mathematics and sciences and made the following concluding remark:
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“Always a student with the widest interests, throughout his life he was
prepared to learn from others, and in his own works often expounded other’s
discoveries in more convenient and accessible form. However of course over-
all he gave to others immeasurably more than he took from them. He in-
fluenced the work of many generations of mathematicians; in particular the
St. Petersburg mathematics school of the second half of the 19th century
and the first quarter of the 20th, founded by P. L. Chebyshev, was very
close in spirit to Euler.”

On the other hand, the academician N. I. Fuss, one of Euler’s closest
student and research assistant, made the following statement on Euler’s
writing of textbooks:

“...who had no smattering of mathematics but was the writer to whom
Euler dictated his textbook Vollstdndige Anleitung zur Algebra, as generally
admired for circumstances in which it was composed as for the supreme
degree of clarity and of method that prevails throughout. The creative
spirit reveals itself even in the purely elementary work.”

In order to provide the evidence of remarkable success story of Euler as
a writer and teacher, it is most appropriate to mention his famous Letters
to a German Princess, Anahalt-Dessau, 15-year old niece of the King of
Prussia on different subjects including natural philosophy, astronomy, op-
tics, acoustics, mechanics, physics, music, electricity and magnetism. This
Letters was one of the most remarkable and popular science books ever
written in the history of science. This was written “with a marvelous clar-
ity”, according to N. I. Fuss. This Letters was translated from German into
eight different languages including Russian, French, English, Swedish, Ital-
ian, Spanish, Dutch and Danish. This book was a compilation of over 200
different letters which were written for the instruction of the 15-year old
Princess on popular subjects such as sound, light, logic, gravity, language,
music and astronomy. However, it may have been written at a level well
beyond that of a 15-year old. In one of his letters dated 1760 on vision,
Euler began with an interesting statement:

“I am now enabled to explain the phenomena of vision, which is un-
doubtedly one of the greatest operations of nature that human mind can
contemplate”.

The publication of a Russian translation of the Letters in four volumes
had a tremendous influence in Russia, and it served as the first encyclopedia
of physics in Russia. An Englishman, Henry Hunter was the first translator
of the Letters into English and he made the following statement in his
Preface:
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“It was long a matter of surprise to me, that a work so well known,
and so justly esteemed, over the whole European Continent, as Fuler’s
Letters to a German Princess, should never have made its way into our
Island, in the language of the Country. While Petersburg, Berlin, Paris,
nay the capital of every petty German principality, was profiting by the
ingenious labors of this amiable man, and acute philosopher, the name of
Euler was a sound unknown to the ear of youth in the British metropolis.
I was mortified to reflect that the specious and seductive productions of a
Rousseau, and the poisonous effusions of a Voltaire, should be in the hands
of so many young men, not to say young women, to the perversion of the
understanding, and the corruption of the moral principle, while the simple
and useful instructions of the virtuous Euler were hardly mentioned”.

At least one other scholarly work of Euler might be added to illustrate
his great success as teacher and writer. This was his 1748 two-volume mas-
terpiece treatise on mathematical analysis entitled Introductio in analysin
infinitorum that was though not basically a textbook, but it was a remark-
able compilation of large amount of material of analysis together with an
extensive new material added by Euler. It was one of Euler’s most bril-
liant and rewarding books, “as marvelous in its clarity of exposition as for
the richness of its contents” according to Fuss. These represented some of
FEuler’s prodigious contributions as writer and teacher. During his lifetime,
Euler became a living legend and versatile creative genius. According to
Laplace, Euler was the premier teacher of all mathematicians of his time.
Lagrange, Laplace and Gauss were truly influenced by Euler’s works. Once
Gauss said that

“...the study of Euler’s work will remain the best school for different
fields of mathematics and nothing else can replace it.”

On several occasions, George Polya (1887-1985) provided an extensive
account of Euler’s remarkable mathematical discoveries, and unique ability
of presenting mathematics to a wide audience. Polya himself was a strong
advocate of Euler’s style of writing and teaching mathematics as he de-
scribed in his 1954 book on Mathematics & Plausible Reasoning, Induction
and Analogy in Mathematics, and he quoted M. Condorcet as saying that:

“He [Euler] preferred instructing his pupils to the little satisfaction of
amazing them. He would have thought not to have done enough for science
if he should have failed to add to the discoveries, with which he enriched
science, the candid exposition of the ideas that led him to those discoveries.”

As an advocate of Euler’s clear and elegant ability of exposition of math-
ematics and science, Polya’s quote in his 1954 book is a delight to state:



Brief Biographical Sketch and Career of Leonhard Euler 51

“A master of inductive research in mathematics, he [Euler] made im-
portant discoveries (on infinite series, in the Theory of Numbers, and in
other branches of mathematics) by induction, that is, by observation, dar-
ing guess, and shrewd verification. In this respect, however, FEuler is not
unique; other mathematicians, great and small, used induction extensively
in their work.

Yet Euler seems to me almost unique in one respect: he takes pains to
present the relevant inductive evidence carefully, in detail, in good order.
He presents it convincingly but honestly, as a genuine scientist should do.
His presentation is “the candid exposition of the ideas that led him to
those discoveries” and has a distinct charm. Naturally enough, as any
other author, he tries to impress his readers, but, as a really good author, he
tries to impress his readers only by such things as have genuinely impressed
himself.”

In his interesting article on Ars Expositionis: Euler as Writer and
Teacher, G. L. Alexanderson (1983) describes an extraordinary ability of
Euler as writer and teacher and says:

“In reading Euler’s exposition, one cannot help but agree with Polya
that from it we can learn “a great about mathematics, or the psychology
of invention, or inductive reasoning [10, p. 99].” His techniques as well as
his results are a bountiful source of ideas for modern researchers. ... he
seems to be talking to the reader, explaining, something apologizing for the
lack of rigor, but always giving insights into the process of discovery [6],
[10, p. 17-21].” Reference [10] is the 1954 book of George Polya as stated
before.

Unfortunately during his second St. Petersburg period from 1766 to
1783, Euler suffered from major health problems, and family disasters. In
1771, his house was badly burnt down in a fire of that year, and he lost
almost all of his household properties including his library, but most of his
books and research manuscripts were fortunately saved. However, his house
was completely rebuilt with preservation of its original form and beauty.
In addition, he became almost blind due to an unsuccessful surgery to re-
move cataract in his left eye in 1766. In 1773, Euler’s first wife Catharina
died, and three years later in 1766 he remarried to his first wife’s half-sister,
Salome Gsell. His two daughters died in 1780 and 1781. Fortunately, he
had a phenomenal memory, prodigious powers of mental calculation, and
his incredible ability to store long mathematical results and formulas in his
memory for later dictation. Amazingly, Euler completed almost half of his
works during his second 18-year stay in St. Petersburg. He continued his
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research on optics, algebra, lunar and planetary motion. His two-volume
book on Elements of Algebra became the most successful mathematics text-
book since Fuclid’s Elements. In these efforts, Euler received considerable
help from his sons, Johann and Christopher, his student, N. I. Fuss and the
academician, A. J. Lexell (1740-1784) who occupied Euler’s position at the
St. Petersburg Academy after Euler’s death in 1783.

This short biographical sketch of Leonhard Euler would perhaps be
incomplete without mention of his personal characteristics. From an early
age, Leonhard was extremely conscious and intensely proud of his religious
and Swiss cultural heritage. Throughout his life, he remained a Swiss citizen
and maintained his family values and religious faith which he inherited
from his parents who wished him to become a priest in his village church in
Switzerland. He and his first wife Catharina raised their five children and
then some of their grandchildren with love and care. He was always very
cordial with his relatives, friends, students, and colleagues. Euler loved
music and musical arts. He devoted all of his leisure time to music and
musical theory. His love of music was directly linked to his mathematical
investigations of the theory of music. His 1739 original treatise on music
was a real testimony of his extensive knowledge and active involvement in
music research. Among other subjects, his celebrated Letters to a German
Princess also contained considerable discussion on music and analysis of
musical sound.

Throughout his whole life, he was actively involved in numerous sci-
entific correspondences in a friendly and respectful manner with many fa-
mous and contemporary mathematical scientists all over Europe. Euler’s
extensive scientific correspondence with notable mathematicians and sci-
entists including Johann Bernoulli, Daniel Bernoulli, Christian Goldback,
J. N. Delisle, P.L.M. Maupertuis, Alexis-Claude Clairaut (1713-1765), Jean
d’Alembert, J. L. Lagrange, and Jean-Henri Lambert (1728-1777), had been
his major sources of exchange of new ideas and discoveries which helped
him to solve new problems and discover new results. It was also a real
testimony of fruitful interaction between mathematical scientists through
exchange of open questions, unsolved problems, conjectures, critical com-
ments, praise and pleasure, and above all, an almost inexhaustible source
of fresh creative ideas. After careful reading and analysis of these abundant
correspondences, one cannot and but be simply impressed by his philan-
thropic nature, and by his sincere respect for every correspondent regardless
of academic title, authority, or social stature. He not only showed respect
for the point of view of an appropriate opponent, he always made a strong
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defense of mathematical or scientific truth. It is also appropriate to cel-
ebrate Euler’s belief of mathematical and scientific discovery or truth by
citing a famous quotation of S. Chandrasekhar (1910-1995) at the conclu-
sion of his Nobel Lecture in December 8, 1983: “The simple is the seal of
the true. And beauty is the splendor of truth.” In general, Euler’s character
was that of a kind and gentle man. Along with spectacular successes of his
many results and discoveries, some of Euler’s work suffered from severe crit-
icisms due to lack of rigor and clarity. However, he was never disappointed
or discouraged by criticisms from others, indeed, he took them as a source
of challenge for new discoveries. Even though he was one of the greatest
mathematical scientists of his time and the recipient of many awards and
honors, Euler retained his modesty and humility.

In order to illustrate his gracious praise and recognition of works of oth-
ers, it may be appropriate to give a couple of examples. It was Euler who
first discovered the calculus of variations in 1744. During 1760-1761, J. L.
Lagrange developed a more general mathematical formulation of calculus
of variations and sent a letter to Euler describing his general treatment of
Euler’s calculus of variations. After receiving Lagrange’s correspondence,
Euler immediately recognized superiority of Lagrange’s work which led to
joint recognition of the Euler-Lagrange equation associated with calculus of
variations. While he was in Berlin, Euler received the two-volume research
work of an Italian mathematician, C. G. Fagnano (1682-1766), entitled
Produzioni Matematiche, published in 1750, for his review. Among other
ideas and results dealing with elliptic integrals and their applications to the
problem of rectification of an arc of an ellipse, hyperbola, lemniscate and
cycloid, a new treatment of the duplication formula for the arc length of the

2 = g2 cos 26 in polar coordinates contained in

famous lemniscate curve, r
these volumes. Fagnano was so proud of his work that he left instructions
to inscribe a lemniscate on his grave. Impressed with the original work of
Fagnano, Euler gave a rave review of it. Stimulated by Fagnano’s work,
FEuler published a series of papers which laid the foundation of a new area
of algebraic functions and their integrals including the remarkable addition
and multiplication theorems for elliptic integrals. Motivated by applica-
tions, Euler’s investigation of elliptic functions also began with his study of
elastica which is the shape of a curve described by a thin elastic rod com-
pressed at the ends. In 1757, Euler proved the famous addition theorems
for elliptic integrals which led to the foundation of a subject of the theory
of elliptic functions. It was Euler who first solved the problem of simple
pendulum with finite amplitude in terms of elliptic functions. In one of his
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books on Number Theory: An Approach Through History from Hammurapi
to Legendre, published in 1984, André Weil (1906-1998), one of the great
mathematicians of the twentieth century, made a delightful comment on
Euler’s personality:

“With characteristic generosity Euler never ceased to acknowledge his
indebtedness to Fagnano; but surely name but Euler would have seen in
Fagnano’s isolated results the germ of a new branch of analysis.”

In his work, André Weil (1983) made another interesting remark on Eu-
ler’s splendid personality and said that Euler was always open and receptive
to new ideas and suggestions. In the words of Weil:

“...what at first is striking about Euler is his extraordinary quickness
in catching hold of any suggestion, wherever it came from... There is not
one of these suggestions which in Euler’s hand has not become the point
of departure of an impressive series of researches.... Another thing, not
less striking, is that FEuler never abandons a research topic, once it has
excited his curiosity; on the contrary, he returns to it, relentlessly, in order
to deepen and broaden it on each revisit. Even if all problems related to
such a topic seem to be resolved, he never ceases until the end of his life to
find proofs that are “more natural”, “simpler”, “more direct”.”

As mentioned earlier, Euler translated the outstanding 150-page book
on New Principles of Gunnery by Benjamin Robins from English to Ger-
man. His German translation with large and extensive mathematical com-
mentaries became almost over 700-page long book — a book of monumen-
tal work which was intended to include all mathematical and experimental
knowledge of ballistics research at the time. On one hand, Euler made
many positive criticisms and endorsement of Robins’ new and brilliant re-
search in ballistics, and on the other hand, the joint work of Euler and
Robins revolutionized the ballistics research of the 18th and 19th centuries.
In view of their notable joint work, both Euler and Robins can be regarded
as the founding fathers of modern ballistics.

In the above and other instances, Euler actively participated in many
historical debates on priority and superiority of scientific discoveries. He al-
ways graciously recognized and praised the work of others in many different
ways.

Sturdily built, broad shouldered and with light-colored bright eyes, Eu-
ler was a life-long Swiss citizen and had enjoyed his excellent general health
throughout his life except for his eye problems. As a human being, he loved
his profession, family and friends, and faithfully fulfilled all of his duties
and obligations to society. Even when he was completely blind, his age
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showed no strain in his instantaneous photographic memory, intellectual
power and imagination, and even his extraordinary ability of carrying out
long and complex calculations. All of his students and colleagues respected
him professionally and admired him personally. Even his blindness did not
prevent him from doing his research and creative activities. He continued
his work with the help of his two sons, Johann and Christopher, his re-
search assistant, Fuss and the academician, Lexell. In early September of
1783, Euler began to suffer from dizziness which presaged his death. Sub-
sequently, Euler died suddenly in St. Petersburg on September 18, 1783 at
the age of 76 as a result of a stroke while playing with his grandson.

It is appropriate to mention that N. I. Fuss delivered the remark-
able Eulogy in Memory of his teacher, Leonhard Euler at the St. Peters-
burg Academy meeting on October 23, 1783. This is an authoritative and
thoughtful eulogy, originally presented in French, describing Euler’s life,
work, professional career and charming personality. Almost in the end of
the eulogy, Fuss made the following memorable statement:

“Such are the works of Euler, such the feats worthy of perpetual remem-
brance. Posterity will join his name to those of the great Galileo, Leibniz,
Newton, and almost all who have honored humankind through their in-
tellect; his name will be remembered when those of so many others who
owe their fleeting moment of renown to the vanity of our age are gone to
everlasting oblivion.

There have been few scientists who have written so much as Euler, but
there are none to compare with him in number and variety of mathematical
discoveries.”

With deep respect, gratitude and admiration, Fuss concluded his eulogy
by adding the following magnificent statement:

“My dear sirs, any attempt of mine to portray to you that delightful
scene of domestic bliss would be in vain. Many of you were, like me, eyewit-
nesses! Above all those of you assured of fame through having had such a
teacher! There are five such former students here; what scientist can boast
that he united in a single collective so many of his students? Let us express
before all our eternal and most fervent gratitude and so demonstrate that
our incomparable teacher evokes astonishment as much for his rare good-
ness as for his extraordinary intellectual power. Friends! Academicians!
Mourn him with the sciences, which have never suffered such a loss, with
his family of which he was adornment and support! My tears and your
flow together; his benefactions, especially to me, will to the end of my life
remain ineradicably with me.”
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In reading Fuss’s authoritative eulogy, we can learn a great deal about
many aspects of Euler’s life, career and great discoveries which will remain
an unlimited source of ideas for the development of modern mathematics
and science.

André Weil also described Euler’s legacy in his own words in his 1984
book as follows:

“No mathematician ever attained such a position of undisputed leader-
ship in all branches of mathematics, pure and applied, as Euler did for the
best part of the eighteenth century.”

Another celebrated mathematical scientist of the twentieth century,
John von Neumann described Leonhard Euler as “the greatest virtuoso of
the period,” for his invaluable contributions and their extraordinary impact
on mathematics, science and society for over three centuries.

In mathematics, the eighteenth century can fairly be labeled as the era
of Euler. However, his remarkable influence on the development of math-
ematical sciences was not restricted to that period only. His extensive
research, lucid writings, tremendous energy, and his mathematical insights
helped explore not only the mathematics and science of his time, but the
life of his professional colleagues, their new opportunities and aspirations.
The work of many outstanding nineteenth- and twentieth-century mathe-
maticians arose directly from his extraordinary influence. It is hoped that
this excursion into the wonderful life and career of Euler would provide the
reader with adequate motivation to explore mathematics and science fur-
ther in the twenty first century. There is no doubt that in a hundred years’
time mathematical scientists will again celebrate the four hundredth an-
niversary of Euler’s birth with the same delight and enthusiasm as we have
commemorated the tercentenary in 2007. It would be very fascinating to
know which areas of Euler’s work will be resonating with the mathematical
and scientific communities by then.

Euler’s simple life and brilliant career was totally dedicated to the pur-
suit of fundamental mathematical and scientific discovery, and dissemina-
tion of new information and knowledge. His unique image in the research
and teaching of contemporary mathematical and physical sciences is still
extremely predominant. There is no doubt at all about his significant and
ever-lasting impact on modern mathematics, modern science and culture.
In many important ways, Euler made a significant and permanent con-
tributions to the welfare of human race. He will be remembered forever
not only for his great and universal achievement, but also for his unique
contributions to the welfare of humankind.



Chapter 3

Euler’s Contributions to Number
Theory and Algebra

“No mathematician ever attained such a position of undisputed
leadership in all branches of mathematics, pure and applied, as
Euler did for the best part of the eighteenth century.”

André Weil

“All celebrated mathematicians now alive are his disciples:
there is no one who ... is not guided and sustained by the
genius of Euler.”

Marquis de Condorcet

3.1 Introduction

In the century before Euler, Pierre de Fermat spent his whole life in an
extensive investigation on the theory of numbers and discovered a wide va-
riety of ideas and results in number theory and formulated the fundamen-
tal principle of geometrical optics. Probably, Euler received considerable
inspiration for his research in number theory from his study of Fermat’s
work. Euler made an extensive research correspondence with his friend
and colleague, Christian Goldback on various problems in number theory.
Undoubtedly, Euler also received many new ideas and results of number
theory from his correspondence with Goldback.

3.2 Euler’s Phi Function and Cryptography

One of Euler’s fundamental contributions to number theory was a gener-
alization of Fermat’s Little Theorem which states that if p is prime and a
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is prime to p, that is, (a,p) = 1, then a?~! — 1 is divisible by p. In other
words,

aP~l = (mod p). (3.2.1)

For example, if p = 7 and a = 2, then 26 — 1 = 63 is divisible by 7. If p =5
and a = 2, 3, 4, then 24 =1 (mod 5), 3* = 1 (mod 5), and 4* =1 (mod 5).

In 1760, Euler made a remarkable generalization by introducing a new
function ¢(n), known as the Euler phi (or totient) function which is defined
as the number of positive integers ¢(n) = r less than n and relatively prime
to n, that is, 1 < r < n and (r,n) = 1. Euler’s theorem states that, if
(a,n) = 1, then a®™ — 1 is divisible by n, that is,

a?™ =1 (mod n). (3.2.2)

It follows from the definition of ¢(n) that ¢(1) = 1, and if p is prime,
then ¢(p) = p — 1. Euler’s ¢ function is a multiplicative function, that
is, ¢(n - m) = é(n) - (m) for all (n,m) = 1 holds. According to the
fundamental theorem of arithmetic, every natural number n(> 1) has a
unique factorization in terms of prime numbers, that is,

m
n=pipst e =[] ol (3.2.3)
r=1

where p,, are the m distinct prime factors of n and k,, are positive integers.

For example, n = 30, then 30 = 2x3x5. If n = 72, then 72 = 8 x9 = 23.32,
If p is a prime, and k is a positive integer, then ¢(p*) = p* — pF~1 =

pF (1 — %) So, in general, if n is of the form (3.2.3), then

¢(n)=n<1_pil) (1_2%2).-.(1_]%). (3.2.4)

This is a general formula for Euler’s phi function in terms of prime factors.
For example, ¢(30) =30 (1—3) (1-3) (1—2%) =8 and

$(72) = ¢ (2°-3%) =72 <1 - %) <1 - %) =24. (3.2.5)

Using the prime factorization of n, it is possible to find another formula
for ¢(n), which follows directly from (3.2.4), in the form

d(n) =pi* " (p1 — 1) P> (p2 — 1) -+ Pl (pm — 1). (3.2.6)

For example, ¢(72) = ¢ (2% -3%) = (2—-1)2371 . (3 —1)3*"1 = 24.
On the other hand, for a composite number n, we obtain totally new
and often unexpected results. For example, for n = 10, ¢(n = 10) = 4 as
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r=1,3,79. Then a* — 1 is divisible by 10. In other words, the fourth
power of any number not containing the factors 2 or 5 has 1 as the last
digit so that 3* = 81, 74 = 2401, 9* = 6561, 13* = 28,561, and so on.

The Euler phi-function has new and modern applications to cryptog-
raphy (or the science of secret codes) which deals with safeguarding and
sending secret messages securely. In simple words, a message M is trans-
mitted by a sender to a receiver in digital encrypted form. The sender
encodes the message M into F so that the receiver can decode E back
into the original message M. Mathematically, the encoded (or encrypted)
message E = f(M) can be represented by the number

E=M° (mod ), (3.2.7)

where s is called an encoded (encrypted) exponent. So, it is relatively easy
to obtain E for any large exponent s. The number r and s form the public
key as they are known to the general public. The exponent s is chosen so
that s and ¢(r) are coprime, that is, (s, ¢(r)) = 1. The major problem is
to obtain M from E, r and s (or to simply invert M from E) which is also
known as the decoding (or decrypting) problem and it is a very difficult prob-
lem. In 1976, Whitfield Diffie and Martin Hellman published a landmark
work describing the public-key encryption system with the aid of one-way
trap door functions. Based on the idea of the trap door function and the
Euler phi function, three mathematicians, Ronald Rivest, Adi Shamir and
Leonhard Adelman at the M. I. T. discovered a new and effective method,
known as the RSA encryspton method which provided the solution of the
cryptographic problem.

In order to solve the decoding problem, the receiver has to use a private
key formed by the exponent ¢ and r so that ts = 1 (mod ¢(r)), or ts =
1+ k& ¢(r) for some integer k. Thus, decoding the message with exponent
t can be done as follows:

E' = Mt = MR e) (mod r) = M, (3.2.8)

since M?®(") = (mod 7).

To encode the message M, two distinct and very large prime numbers p
and ¢ are chosen with r = pq so that ¢(r) = ¢(pq) = ¢(p)o(q) = (p—1)(¢—
1), and the encoded message is given by (3.2.7). The computation of the
decoding exponent t requires values p and ¢. In general, M, s, r and ¢ are
very large numbers so that computations seem to be almost a formidable
task. However, there are effective methods of computing these numbers (see
Silverman, J.H. (2006)). Clearly, the Euler phi function played a major and
effective role in secure transmission of secret codes and ciphers.
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Considerable recent studies have been made about security offered by
the RSA. The application of cryptography to computer data security has ex-
tensively been investigated in recent years. Probably, Euler never dreamed
of such applications of his phi function to cryptography and modern public-
key encryption systems.

3.3 Euler’s Other Work on Number Theory

In a letter to Euler in 1742, Goldback conjectured that every even number
greater than 2 is the sum of two prime numbers. For example, 4 = 2 + 2,
6 =3+3,8=3+5,12=>5+7. Computer searches have numerically
confirmed to Goldback conjecture for all even numbers up to 10'°. Euler
replied that he believed, but could not prove it, and formulated the stronger
version that every even integer (> 4) is the sum of two primes. In 1937, a
Russian mathematician Ivan M. Vinogradov (1891-1983) proved that any
sufficiently large odd integer is the sum of at most three prime numbers.
However, this conjecture has not yet been proved or disproved. This is one
of the unsolved problem in number theory.

In 1770, both Euler and Lagrange proved the Four-Square Problem,
that is, every positive integer, n is the sum of at most four square integers:

n=ax?+y* 4+ 22 + v’ (3.3.1)

In 1783, Euler gave a proof of Wilson’s (1741-1793) theorem that if and
only if p is prime, then

p-1I4+1=0 (mod p). (3.3.2)

For example, p = 2, 3, 5, ---, are primes because (3.3.2) holds. John
Wilson, a senior Wrangler in mathematics of the University of Cambridge,
conjectured the result (3.3.2), but could not prove it. His teacher Edward
Waring (1734-1798) of the University of Cambridge published it under the
name of Wilson. The Fermat theorem (3.2.1) can be used to prove Wilson’s
theorem (3.3.2). In fact, (3.2.1) holds fora =1, 2, 3, ---, p— 1. According
to the fundamental theorem of algebra, these p — 1 roots must be all the
roots of (3.2.1) so that

a?t—1=(@—-1)-(a—2)-(a—p+1) (mod p). (3.3.3)
Putting a = p gives

pPPl-1=@p-1)(p-2)---1=(p-1)! (modp)
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and pP~! = 0 (mod p). Thus, Wilson’s theorem (3.3.2) follows.
Fermat had conjectured that all numbers of the form

F,=2""4+1, n=0,1,2,34,-- (3.3.4)

are primes. Fermat’s conjecture is true for n = 0, 1, 2, 3, 4 as it can
easily be verified and so, only 5 Fermat primes are known today. In 1732,
Euler proved a remarkable result, that is, the fifth Fermat number, Fs is
not prime, but composite, as it is divisible by 641 because

Fy =22 4 1 = 4294967297 = 641 x 6700417 (3.3.5)

The Fermat numbers Fg, F7, Fg are composite and some of their factors
are now known, and at least 200 Fermat numbers are now known to be
composite including F,, n = 2478782 discovered by John Cosgrave and
his associates at the St. Patrick College, Dublin in 2003. It is important
to note that the Fermat primes are of special interest in plane geometry.
Gauss proved one of the most remarkable results which relates the Fermat
primes with the sides of a regular polygon. More precisely, if F), is a prime
p, then a regular polygon of p sides can be inscribed in a circle by Euclidean
methods.

Marin Mersenne had conjectured that there are only finitely many
primes of the form M, = (2? — 1), when p is a prime. These are called
Mersenne primes. Only 44 Mersenne primes are known today. If p = 11,
211 — 1 =23 x 89. As of 2004, the largest known Mersenne prime is 2P — 1
when p = 24036583, only the forty-first Mersenne prime number. It was
found by the Great Internet Mersenne Prime Search (GIMPS) project. To
each Mersenne prime, M, = (2P — 1), there is an associated perfect num-
ber, P = M, - 2P~1. A positive integer n is called a perfect number, if the
sum of its proper divisors (other than the number itself) s(n) = n. Hence,
o(n) =s(n)+n=2n. if o(n) <2n or g(n) > 2n, then n is called deficient
or abundant respectively. Historically, the concepts of perfect number, defi-
cient number and abundant number were discovered by Pythagoreans. One
of the Pythagoreans used the Euclid method to generate perfect numbers
which remains today the only method known to generate such numbers. If
the sum of the numbers 1, 2, 4, - -+, 277! is prime, then the sum multiplied
by the last term is perfect. For example, 142 = 3, which is prime. Then, 3
is multiplied by the last term, 2 gives 6 which is a perfect number because
the sum of its divisors 1, 2, 3 is 6. Similarly, 1+2+4 = 7 which is prime so
that 4 x 7 = 28 which is the next perfect number. Then 1+2+44+8416 = 31
which is also prime so that 31 x 16 = 496 is a perfect number. The next



62 The Legacy of Leonhard Euler — A Tricentennial Tribute

perfect number is 8128 = (1 +24+4+ 8+ 16 + 324 64) x 64 = 127 x 64.
This method led Nichomachus to find the first four perfect numbers. As of
today, there are exactly 41 perfect numbers known.

In 1732, Euler discovered the 19-digit eighth perfect number P =
23171231 — 1) when p = 31. In the book 1X of his Elements, Euclid
proved in about 350-300 BC that if 2P — 1 is prime, the number

P =212 - 1) (3.3.6)

is perfect. Two thousand years later, Euler showed that every even perfect
number is of this type. Indeed, there are no known odd perfect numbers.
It is conjectured that all perfect numbers are even. Although this has not
yet been proved, some evidence has been found in favor of this conjecture.
If an odd perfect number exists, it is known that it must be greater than
10390 and have at least 9 distinct prime factors. On the other hand, every
perfect number is a sum of consecutive odd cubes. For example,

28 =13 +33% 496 =1°+3%+ 5%+ 7°. (3.3.7)

If n is perfect, then the sum of the reciprocals of all divisors of n is always
equal to 2. For example, 6 is perfect and has divisors 1, 2, 3, 6, and hence,

11 1 1 9
i+§+§ 6=~ (3.3.8)
The number 28 is also perfect with divisors 1, 2, 4, 7, 14, 28, and share the
same property.
Around 250 A.D., an ancient Greek mathematician, Diophantus of
Alexandria sought solutions in integers or rational numbers of the so called

Diophantine equations of the form
"4yt =2", n > 3. (3.3.9)

This is universally known as the Fermat Last Theorem (FLT). Fermat gave
a proof of (3.3.9) for n = 4. It was Euler who proved the FLT for n = 3.
The significance of Euler’s proof was that it made use of number theory in
complex numbers, by introducing Q[v/—3|, where Q is the field of ratio-
nal numbers with the property of unique factorization of non-zero numbers
as products of prime numbers. In 1851, a German mathematician, Ernst
Eduard Kummer (1810-1893) made the major breakthrough in the intro-
duction of modern algebraic number theory and its successful applications
to FLT in many cases. He showed that the FLT is true for the so called
irregular primes. The true breakthrough was made by Leuis Joel Mordell
(1888-1972) who conjectured that (3.3.9) has at most a finite number of
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solutions. In 1983, Gerd Faltings (1954- ) proved that the Mordell conjec-
ture for Diophantine equations is true. In spite of numerous attempts made
by many world’s famous mathematicians, it was not until 1994 that An-
drew Wiles proved the FLT by proving the 1955 Shimura-Taniyama-Weil
geometric conjecture about elliptic curves. Finally, Andrew Wiles (1953- )
successfully solved the Fermat Last Theorem in 1995.

Euler formulated a remarkable conjecture that

a4l - dap=2" (3.3.10)

has nontrivial integer solutions if and only if k¥ > n. For n = 3 and k = 2,
Euler’s conjecture corresponds to the proved Fermat Little Theorem. For
n = 3 and k = 3, (3.3.10) implies that the sum of three cubes can be
another cubic. FEuler’s conjecture remained valid for over two centuries.
In 1966, Lander and Parkin used the CDC 6600 computer to discover a
counter example for n = 5, that is,

275 + 84° 4 110° + 133° = 144°. (3.3.11)

FEuler also discovered a remarkable property of the quadratic expression
with integral n,

f(n) =n?*+n+41. (3.3.12)

For n = 0 to 39, the exact value of f(n) is a prime number. For example,
f(0) =41, f(1) = 43, f(2) = 47 which are primes. Indeed, the expression
(3.3.12) produces a large number of primes, but f(40) = 412 = 1681 which
is not a prime. Of the first 40 million values the proportion of primes is
about one in three — far greater than any other quadratic formula. In fact,
Euler’s quadratic expression (3.3.12) seems to be unusual in its production
of prime numbers. What happens when n is replaced by a real or even by a
complex number? Such a questions is investigated in a new branch of pure
mathematics, known as analytic number theory. When n is replaced by
a real number zx, there are complex roots of the Euler quadratic equation
f(x) =0 so that

1 1
v=—g*i-5VI63. (3.3.13)

What is so special about /163 ? In fact, it is the largest value of d for which
the number system a-+ibv/d allows unique factorization. With each number
system derived from some value of d, Gauss identified a certain natural
number h(d) called the class number of that system. He also described an
extensive computation of class numbers, and observed that, for each class
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number k, there exists a largest value of d for which h(d) = k. The largest d
with h(d) = 1 was d = 163. In Gauss’ time, nine valuesof d = 1, 2, 3, 7, 11,
19, 43, 67 and 163 were known for which the system of numbers a + bv/—d
has the unique factorization with the largest d = 163. This explained
why number 163 was so special in Fuler’s quadratic equation. On the other
hand, the largest d for which h(d) = 2 seemed to be d = 427, and the largest
d with h(d) = 3 was 907. Gauss was neither able to confirm that any of
these values really was the largest, nor prove that there always was a largest
d. However, Gauss conjectured that this would be the case. In 1952, this
class number problem was solved for the case h(163) = 1 by a retired Swiss
mathematician, Kurt Heegner. However, nobody believed his proof because
his paper was hard to understand. Another fifteen years later in 1967,
Harold Stark (1939- ) of the Massachusetts Institute of Technology and
Alan Baker (1939-) of the University of Cambridge provided independently
different proofs to establish that there is no tenth d.

In his famous 1750 paper with a fascinating title, “De Numeris Ami-
cabilibus”, Euler began his extensive study of amicable numbers. A pair
of numbers (m,n) is called a pair of amicable numbers if the sum of the
proper divisors of m (except m) is equal to n and vice-versa. The smallest
amicable pair is (220,284) because the sum of the proper divisor of 220 is
142444+5+10+ 11420+ 22+ 44+ 55+ 110 = 284, and the sum of the
proper divisors of 284 is 1 +2 + 4 + 71 4 142 = 220. Only three amicable
pairs were known before Euler. In 1747, Euler published a short paper with
a list of 30 amicable pairs using the method of Descartes and Fermat. In
his 1750 paper, Euler introduced a new number theoretic function, known
as the Fuler sigma function, o(m) which is defined as the sum of all divi-
sors of a given number m and developed a new method of finding amicable
pairs. For example, m =21, 0(21) =1+ 3+ 7+ 21 = 32.

There are immediate characterizations of prime numbers, that is, p is
prime, if and only if o(p) = p + 1. More generally, if p and ¢ are different
primes, then

o(pq) = o(p)a(q). (3.3.14)
For example 0(21) = o(3-7) = 0(3)0(7) = 4.8 = 32. Euler proved a more
general result, that is, the multiplicative result holds not just for different
prime numbers, but for any whole number whose greatest common divisor

is 1. More explicitly, Euler proved the following theorem: If ged(a,b) = 1,
then

o(ab) = o(a)o(b). (3.3.15)
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For example, to determine the sum of all divisors of 585, we write it into
relatively prime factors and use the above theorem. Thus,

o(585) = (5-9-13) = 0(5)0(9)0(13) = 6- 13- 14 = 1092.  (3.3.16)

Euler used his sigma function to reformulate the definition of amicable
number pairs by noting that the sum of the proper divisors of a whole
number of n is o(n) — n. Consequently, m and n are amicable pairs if and
only if o(m) —m = n and o(n) —n = m. This leads to Euler’s famous
definition that m and n are amicable if and only if

om)=m+n=oc(n). (3.3.17)

Euler used this elegant characterization as his method of testing in the
world of amicable numbers.

In 1737, Euler proved that the number of primes is infinite by showing
that the sum of their reciprocals diverges, that is

> % = 0. (3.3.18)

n=prime

Without any question about convergence, in 1748 he proved that

oo oo

((z) = Z % = H(l —p )71, pisprime (3.3.19)
n=1 p=2

where ((z) is the FEuler zeta function. He also recognized at that time that
there was a connection between the zeta function and the distribution of
prime numbers.

This result reduces to (3.3.18) in the limit at z — 1. It is now known
that the number of primes is infinite. We next discuss another major ques-
tion dealing with the number of primes less than or equal to x which is
denoted by m(z). For example, 7(2) =1, n(3) = 2, n(10) =4, n(17) =7
and so on. This leads to the equivalent statement of the Euclid theorem as

lim 7(z) = oo. (3.3.20)
This function m(x) has been the subject of intense research for the last

several hundred years. The precise nature of 7(z) as x — oo has become
known as the celebrated Prime Number Theorem:

o m(x)
1 ——— =1 3.3.21
Or, equivalently, as £ — oo
m(x) ~ Lo m(x) ~ L(x) ’

Inz’
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or

(@) ~ Li (z) = / o du (3.3.22)

o Inu’

Among all asymptotic approximations for 7(z) for large = obtained by
many great mathematicians, the function Li(z) provides a much closer
asymptotic approximation to 7(x) than does (z/Inx) or L(x). Euler, Leg-
endre and Gauss suggested the Prime Number Theorem (3.3.21) without a
conclusive proof. It is natural to ask about the distribution of primes, that
is, how the primes are distributed on the positive real axis. It follows from
the available data that over a long intervals the density of primes tends to
decrease as one approaches larger and larger integers.

However, Euler asserted the following functional equation for real

C(1 - x) = 2(27) " cos (%) T(z) (). (3.3.23)

In 1859, Riemann introduced the zeta function ((z) for complex z = x + iy
and proved (3.3.23) for complex z = x + iy and then used ((z) to prove
the Prime Number Theorem. He generalized the Euler result (3.3.19) for
complex z in the form

L _ ﬁ <1 L ) (3.3.24)
(2) o5 I
Thus, the Riemann zeta function is closely associated with the distribution
of prime numbers. Indeed, the asymptotic distribution of primes is related
to the singularity of the zeta function. It can be shown that, for large x,

m(x) ~ " = Li(x). (3.3.25)

5 Inu

This gives the asymptotic distribution of the prime numbers which first
conjectured in 1791 by Gauss, and then finally and independently proved
by Jacques Hadamard (1865-1963) and Charles-Jean de La Vallée Poussin
(1866-1962) in 1896. However, it may be appropriate to mention some
remarkable progress made by the Russian mathematician P. L. Chebyshev
(1821-1894) toward a proof of the prime number theorem in 1852 and 1854
based on the Euler zeta function {(z) for real z. In fact, he proved that

092120 < lim inf — L <1 < Tim sup —F) < 110555, (3.3.26)

About fifty years after the Hadamard-de la Vallée Poussin proof, Paul
Erdés (1913-1996) and Atle Selberg (1917-2007) gave independently an ele-
mentary proof of the prime number theorem in 1948 without any knowledge
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of complex function theory. But their proofs are still very long and compli-
cated. It was Norbert Wiener (1894-1964) who derived the prime number
theorem from the Wiener-Ikehara Tauberian theorem. This is perhaps a
more transparent proof from the analytical point of view.

Riemann pointed out that further investigation of the zeta function
requires information about the complex zeros of ((z), and then conjec-
tured that all non-trivial zeros of the zeta function ((z) lie on the line
z = % 4 4y. This is universally known as the Riemann Hypothesis which
has not yet been proved or disproved. If the Riemann Hypothesis is
true, the known estimate 7(x) = Li(z) 4+ O[z exp(—cvInz)] would become
w(z) = Li(z) + O(v/z1lnz). In other words, the validity of the Riemann
Hypothesis is equivalent to the statement that |7 (z) —Li(z)| < av/z Inz for
some constant a. According to the 1974 Fields Prize Winner mathemati-
cian, Enrico Bombieri (1940- ), it seems very hard to make further improve-
ment of the above estimate because of Littlewood’s theorem that the degree
of oscillation w(x) — Li(z) is asymptotically of the order Li(y/z)Inlnlnz.
It is worth to quote Bombieri’s statement: “The failure of the Riemann
Hypothesis would create havoc in the distribution of prime numbers”.

In 1896, Hadamard applied the theory of entire functions of a complex
variable to prove the Prime Number Theorem based on crucial fact that
¢(2) # 0 for x = 1. On the other hand, in 1896, Vallée Poussin used
some properties of the zeta function, and finally proved the Prime Number
Theorem. We close this section, by quoting A. E. Ingham’s (1995) words
from his treatise The Distribution of Prime Numbers:

“The solution (of the Prime Number Theorem) just outlined (that of
de la Vallée Poussin and Hadamard) may be held to be unsatisfactory in
that it introduces ideas very remote from the original problem, and it is
natural to ask for a proof of the Prime Number Theorem not depending on
the theory of functions of a complex variable. To this we must reply that
at present no such proof is known. We can indeed go further and say that
it seems unlikely that a genuinely ’real variable’ proof will be discovered,
at any rate so long as the theory is founded on Euler’s identity. For every
known proof of the Prime Number Theorem is based on a certain property
of the complex zeros of ((s), and this conversely is a simple consequence
of the Prime Number Theorem itself. It seems clear therefore that this
property must be used (explicitly or implicitly) in any proof based on ((s),
and it is not easy to see how this is to be done if we take account only of
real values of s.”
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3.4 Euler and Partitions of Numbers

During his stay in Berlin, a mathematician, Phillip Naude (1684-1747) of
French origin, raised a number of mathematical questions in his letter to
Euler in 1740. One of his question was: In how many ways can integer n
be represented as a sum of integers? In response to this question, Euler
discovered many new ideas, results and methods of partitions of numbers.
He presented many elementary but remarkable results in his fundamental
treatise on analysis, Introductio in analysin infinitorum.

The partition function, p(n) is defined to be number of ways of writing
a positive integer n as a sum of strictly positive integers. For example:
6=5+1=442=44+14+1=3+3=3+24+1=24+2+2=
2424+1+1=3+14+14+1=241+14+14+1=141+1+14+1+1so that
p(6) = 11. Similarly, the partitions of 6 into odd parts are 5+1=3+1=
3+1+1+1=1414+141+1+1 so that the number of partitions is 4.
The numbers of partitions of 6 into distinct parts (6,5+1,442,34+2+1) is
also 4. The number 6 has only one partition into distinct odd parts: 5+ 1.
This illustrates a simple idea of the concept of unrestricted and restricted
partitions of an integer n. The restrictions may sometime be so stringent
that p(n) does not exist. For instance, 10 cannot be partitioned into three
distinct odd parts.

Partitions have an inherent symmetry. The geometrical representation
of a partition, known as Ferrers graphs, is given by dots which is introduced
by a British mathematician, Norman M. Ferrers (1829-1903). In quantum
mechanics, such geometrical representations are known as Young’s tableauz
which is introduced for the study of symmetric groups. They are also
found to be useful for the investigation of the symmetries of many-electron
systems.

Euler proved many important theorems in the theory of partitions. He
considered a power series in the form

F(x) = Zp(n) ", (3.4.1)
n=0

where F'(x) is called the generating function of the partition function p(n).
Based upon this generating function, Euler formulated the analytical theory
of partitions by proving a simple and remarkable result:

F(a)=Y p)z" = [[ @ +a™ + 2> +---) = [[ (12", (3.4.2)
n=0 m=1 m=1

where p(0) = 1. This is known as the Euler Theorem provided |z| < 1.
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It also follows from (3.4.2) that the generating function Fy,(z) for the
partition of n into integers the largest of which is m has the form:

1 1
Fn(2) = =m = : (3.4.3)
= (-2%) (1-2)(1-2%)--(1-2m)
Similarly, the generating function for the partition of n into distinct integers
is

F(z)=(1+z)(1+2%) (1+2%) . (3.4.4)
This result can be rewritten as
1—22 1—2* 1-—25
r _ . . 4.
(z) l—2z 1—22 1—2a3 (3-4.5)
1 = 2 1 -1
_ m= . (3.4.6
(1—-2)1—2%)(1 —ab)- H ( )

m=1
The right-hand side of this result is obviously the generating function for
the partition of n into odd integers. This also gives a remarkable result
which says that the number of partitions of n into unequal parts is equal
to the number of its partitions into odd parts.
Another beautiful result follows from Euler’s Theorem, and it has the
form
(1—2%)(1 —ah)(1 —25)---
A=)l —a%)(1 —a7)--
3.

=l4az+2>+2%+204+... . (34.7)

4.7) are the familiar triangular numbers, /\,, = 1+
2434 ---4+n = in(n+ 1) that can also be represented geometrically
as the number of equldlbtant points in triangles of different sizes. These
points form a triangular lattice as shown in Figure 3.1. Thus, the triangle

The powers of = in

numbers A, are 0, 1, 3(1 + 2), 6(3 + 3), 10(6 + 4), 15(10 +5), - --. Their
first differences form a linear progression 1, 2, 4, 5, ---. As a generalization
1+2=3 3+3=6 6+4=10 10+5=15

Fig. 3.1 The triangular numbers A, =1+2+34---+n= %n(n +1).
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[ ]
[ ]
[ ]

1 1+3=4 4+5=9 9+7=16 16+9=25

Fig. 3.2 The Square numbers [, = (n + 1)2.

of this idea, square numbers are defined by the number of points in square
lattices of increasing size, that is 1, 4(1+3), 9(4+5), 16(9+7), 25(16 +9),

. In other words, the square numbers are [J,, = (n + 1)? as shown in
Figure 3.2. It is possible to generalize these numbers for n-gonal numbers
(such as pentagonal and hexagonal numbers) f, (k) given by

fn(k) = %(n —2)k* + %nk +1, (3.4.8)
when n = 3, f3(k) = 3(k+2)(k+ 1) (triangular numbers when k =0, 1, 2,
3,4,5,6,--+), n=4, fa(k) = (k+1)? (square numbers), n =5, fs(k) =
2(k +1)(3k +2) (pentagonal numbers); and n = 6, fo(k) = (k+1)(2k+1)
(hezagonal numbers).

The sum of the triangular numbers is

The sum of the reciprocal of the triangular numbers is

I S S S B I
Znn+1) 1 3 6 10 15

=2 1+1+1+1+1+
S "\2 6 12 20 30

[ R R B e e

In his article, Nelson (2008) presents many classical results of elementary
number theory involving triangular numbers A,. He illustrated relatively
less known pattern which involves longer and longer sums of consecutive
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squares including
3’ +4° =57
10% + 112 + 122 = 132 + 142,
212 4 222 + 232 4 24% = 257 + 262 + 277

An algebraic proof of the general identity

(40, =)+ -+ (40,)° = (400 +1)° + - + (40, +n)®  (3.4.11)
is available in the literature. In fact, we write
[(mn $1)% = (40, — 1)2} doet [(4An 1) — (47, — nﬂ — (40,)2.

(3.4.12)
In 1750, Euler ingeniously proved that the partition function generated

by the product []°_; (1 — 2™), the reciprocal of the generating function of
p(n), has a surprisingly simple series representation

1—-a™ =1+ i(—l)" [x“’(") 4 xw(—n)} _ i (_1)nxw(n)
n=1

n=—oo

o0

m=1
=l-z-2*+2°+2"+ -, (3.4.13)

where the integers w(n) = % (?m2 — n) are called the pentagonal numbers
which can be illustrated geometrically as the numbers of equidistant points
in a pentagon of increasing size (see Figure 3.3). These points form a
pentagonal lattice. Thus, we state the Fuler Pentagonal Number Theorem:
If |z| < 1, then (3.4.13) holds. This is one of the celebrated discoveries
of Euler in number theory. It is important to point out that generating
functions usually play a fundamental role in probability and statistics and
in the theory of elliptic and associated functions.

1 1+4=5 5+7=12 12+10=22

Fig. 3.3 The Pentagonal numbers, w(n) = %n(?m —-1).
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Furthermore, combining (3.4.2) and (3.4.13) leads to a recursion formula
for the partition p(NN)

p(N) = [p(N = 1) +p(N = 2)] = [p(N = 5) + p(N = 7)]
+[p(N =12) +p(N = 15)] — -+ + (=1)"p(N — w(—n)),(3.4.14)
where w(—n) = 3n(3n + 1). This relation (3.4.14) provides an efficient
algorithm for computing the value of p(N) for a given N. As 2(3n? + n)
assumes the values 0, 1, 2, 5, 7, 12, 15, --- in succession, n's are ticked
off in sequence: 0, —1, 1, —2, 2, —3, 3 and so on. The series on the right
hand side of (3.4.14) breaks off before the first n for which £(3n?+n) > N.
For example, given that p(0) = 1, p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5,
p(5) =7, p(6) = 11 and p(7) = 15, we can use (3.4.14) to compute p(8),
p(9), p(10), p(11) and p(12) as follows:
N=8n=0-1,1,-22,
p@B) =pB—1)+p(8-2)—p(B-5)-p@8-7)
=p(7) +p(6) —p(3) —p(1) = 22
p(9) = p(8) +p(7) — p(4) — p(2) = 30.
Similarly, we obtain p(10) = 42 and p(11) = 56. Finally, when N = 12,
n=0,-1,1, -2, 2, -3, we find
p(12) = p(11) + p(10) — p(7) — p(5) + p(0) = 77.
The relation (3.4.14) was used to calculate

p(200) = 3972999029388. (3.4.15)

Actual numerical computation reveals that the partition function p(n)
grows very rapidly with n. This leads to the question of exact or asymp-
totic representation of p(n) for large n. During the early part of the 20th
century, G. H. Hardy (1877-1947) and Srinivasa Ramanujan (1887-1920)
made significant progress in the determination of an asymptotic formula
for p(n). Using elementary arguments, they first showed

)\ 1/2
logp(n) ~ 7 (2?) +0(vn) as n— oo. (3.4.16)

Then, with the aid of a Tauberian Theorem, Hardy and Ramanujan (1918)
proved that the number p(n) of distinct ways of writing n as the sum of
positive integers has the asymptotic representation:

p(n) ~ —— exp %(2—”)1/21 I (3.4.17)

- an/3 3
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They also proved the following asymptotic formula for 1p(n) which rep-
resents the number of distinct partition of n:

1 n
1p(n) ~ 13 exp <7r §) , as n — oo. (3.4.18)

These are the most remarkable results in the theory of numbers. This
asymptotic formula (3.4.17) can be used to calculate p(200) which is an
excellent agreement with the result (3.4.15). Equally remarkable was Hardy
and Ramanujan’s proofs of (3.4.17). One proof is based on the elementary

recurrence relation
oo

p(n) =3 > o(k)o(n—k),  p0)=1, (3.4.19)
k=1
where o (k) is the sum of the divisors of k. The asymptotic approximation
of o(n) led to this result (3.4.17). Hardy and Ramanujan’s second proof
was based upon the Cauchy integral formula, which follows from (3.4.1)
and Taylor’s series expansion,
1 F(z)
p(n) = i ozt
where the function F(z) is defined in (3.4.2) and it is analytic in the unit
disk |z| = 1, and C is a closed contour enclosing the origin and lying
entirely inside the unit disk. Finally, they proved that F(z) in (3.4.2) is
essentially a modular form. Making the change of variable z = exp(27iT)
the denominator F(x) differs only by a simple factor from

(3.4.20)

T — , exp (ZF)
n(7) = exp (ﬁ) 2 {1 — exp(2mimr)} = S () exp(2rinT)’

(3.4.21)

This is actually a modular form. In his famous series of ‘Partitio Nu-

merorum’, Hardy and Littlewood devised a new remarkable technique, the

so-called Hardy—Littlewood circle method, to obtain some new striking re-

sults. This method was very useful for the investigation of other additive

questions in number theory. An explicit formula for the Fourier coefficients

p(n) of [n(7)]~! exp(mit/12) was found by using the circle method.

Using the modular character of F'(z), Hardy and Ramanujan applied
the general theory of residues to F(z) to obtain a series representation of
p(n). It has been shown that the rigorous proof of (3.4.19) depends on
the Dedekind function and its behavior under the transformation of the
modular group

, ar+b
=

= —bc=1. A4.22
o1 d ad — be (3 )
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All these results seem to be very important in their own right and their
proofs have successfully been generalized to deal with general modular
forms of positive dimension, stimulating a vast amount of research in the
theory of modular functions during the twentieth century.

Subsequently, Hardy and Ramanujan obtained a truly remarkable result
in the form

p(n) ~ 3 Ly(m)®,(n) (3.4.23)

q=1
where
/2 1/2
_ v d (2 (n L
O,(n) = o3 dn/\" exp | | 5 An |, An=1|n 51 ,
(3.4.24ab)
Lq(n) = pr,q exp(—2mip/q), (3.4.25)

q
p runs through the integers less than and prime to ¢, and w, 4 is a certain
24qth roots of unity.

In particular,

1 exp(KAn) (2"
p(n) ~ 4\/?_))\% exp(K\,) + O (T) , K=m (g) ,n > 1.
(3.4.26)

Moreover, when A2 is replaced by n, then (3.4.26) becomes identical with
(3.4.17). Finally, in 1937, Hans Rademacher (1892-1969) further improved
and fully completed the asymptotic analysis of p(n) by proving an exact
formula

p(n) = %\/5 ; VG Ag(n) % [% sinh <K)\"

where

)y n>1, (3.4.27)

Ay(n) = Z wp.q exp(—2nmip/q), wpq =exp[ris(p,q)], (p,q) =1,
p mod q

(3.4.28)
and s(p, q) is the Dedekind sum.

Thus, the theory of Hardy—Ramanujan’s partitions as well as the work of
Redemacher is truly remarkable and has stimulated tremendous interests in
subsequent developments in the theory of modular functions. The Hardy—
Ramanujan collaboration on the asymptotic formula for p(n) produced one
of the monumental results in the history of mathematics.
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Ramanujan made some significant contributions to the theory of parti-
tions. He was not only the first but the only mathematician who success-
fully proved several remarkable congruence properties of p(n). Some of his
congruences include

p(bm+4)=0 (mod 5), (3.4.29)
p(Tm+5) =0 (mod 7), (3.4.30)
p(1lm+6) =0  (mod 11). (3.4.31)

All these results are included in his famous conjecture: If p =5, 7 or 11
and 24n — 1 = 0 (mod p%), a > 1, then
p(n)=0 (mod p®). (3.4.32)
This was a very astonishing conjecture and has led to a good deal of the-
oretical research and numerical computation on congruence of p(n) using
H. Gupta’s table (1980) of values of p(n) for n < 300. However, S. Chowla
(1907-1995) found that this conjecture is not true for n = 243. For this n,
24n — 1 = 5831 = 0 (mod 73) but
p(243) = 133978250344888 =0 (mod 72),
(3.4.33)
#£0  (mod 7%).
Subsequently, in 1936, D. H. Lehmer (1905-1991) became deeply involved
in the proof of the conjecture and also in the computation of p(n) for large
n. In 1938, G. N. Watson (1907-1995) proved Ramanujan’s conjecture for
powers of 7. Finally, in 1967, A. O. L. Atkins (1925-2008) settled the prob-
lem by proving the conjecture for powers of 11. Ramanujan’s conjecture can

now be stated as an important theorem: If 24n —1 = 0 (mod d = 5%7°11°),
then

p(n)=0 (mod d). (3.4.34)

One of the remarkable applications of the theory of partitions deals with
the problems of statistical mechanics. The central problem of statistical me-
chanics is the determination of number of ways a given amount of energy
can be shared out among the different possible states of an assembly. This
problem is essentially the same type as that of finding the number of parti-
tions of a number into integers under certain restrictions. The methods of
partitions have been applied to study the Bose—Einstein condensation of a
perfect gas. Several authors including Auluck and Kothari (1946), Temper-
ley (1949) and Dutta (1956) have discussed the significant role of partition
functions in statistical mechanics.
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We consider an assembly of N non-interacting identical linear simple
harmonic oscillators. The energy levels associated with an oscillator are
Em = (m + 3)lhw where m is a non-negative integer, h = 27h is the Planck
constant, and w is the angular frequency. If E represents the energy of the
assembly, a number n, in units of hw, is defined by

hwn = E — %th (3.4.35)

where the second term on the right hand side represents the residual energy
of the oscillators. We denote 1(E) for the number of distinct wave functions
assigned to the assembly for the energy state E. It is well known that,
for a Bose—Einstein assembly, the number of assigned wave functions is
the number of ways of distributing n energy quanta among N identical
oscillators without any restriction as to the number of quanta assigned to
the oscillator. For a Fermi—Dirac assembly, the energy quanta assigned
to all oscillators are all different. For the case of a classical Maxwell—
Boltzmann assembly, oscillators are considered as distinguishable from each
other, and the number of wave functions is simply the number of ways of
distributing n energy quanta among N distinguishable oscillators which
is equal to the number of ways of assigning N elements to n positions,
repetitions of any element are permissible.
It turns out that

Y(E) = py(n) for the Bose-Einstein assembly, (3.4.36)
Y(E) =Qnn)+ Qn-1(n) = Qn(n+ N) for the Fermi-Dirac assembly,
(3.4.37)

NH, (N+n-1)!

WE) = = W (N —1)ln!

for the Maxwell-Boltzmann assembly,

(3.4.38)

where % is inserted to make the entropy expression meaningful.

It is interesting to point out that when N = O(y/n), pn(n) and
Qn(n+ N) tend to Y H,,/N!. This means that, for N < /n, both the
Bose-Einstein statistics and the Fermi-Dirac statistics tend to the classical
Maxwell-Boltzmann statistics.

It has been confirmed that the results of the Bose—Einstein condensa-
tion phenomena are in excellent agreement with those obtained by using
the Hardy—Ramanujan asymptotic formula. This shows the great impor-
tance of the Hardy—Ramanujan asymptotic result in statistical mechanics.
A method similar to that employed for the derivation of the results for
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the Bose—Einstein assembly can be used successfully to derive asymptotic
formula for the Fermi-Dirac assembly. Thus, any thermodynamic assem-
bly of non-interacting particles can be described by the Hardy—Ramanujan
partition formula. Many interesting results for the Bose-Einstein conden-
sation theory have also been obtained by using the properties of partition
functions.

In essentially statistical approach to thermodynamic problems, Dutta
(1955) obtained some general results from which different statistics viz.,
those of Bose—Einstein, Fermi-Dirac and Gentile, Maxwell-Boltzmann can
be derived by using different partitions of numbers. It is noted that math-
ematical problems of statistics of Bose—Einstein, Fermi-Dirac and Gentile
are those of partitions of numbers (energy) into partitions in which repeti-
tion of parts are restricted differently. In partitions corresponding to Bose
statistics any part can be repeated any number of times (d — c0), that to
Gentile statistics any part can be repeated up to d times where d is a fixed
positive integer, and that to Fermi statistics no part is allowed to repeat,
that is, d = 1. All these led to an investigation of a new and different
type of partitions of numbers in which repetition of any part is restricted
suitably. Motivated by the need of such partition functions and its physical
applications to statistical physics, Dutta (1956, 1957) studied a new par-
tition of number n into any number of parts, in which no part is repeated
more than d times. Dutta’s partition function is devoted by gp(n). Dutta
himself and in collaboration with Debnath proved algebraic and congruence
properties of gp(n). They obtained a simple algebraic formula to calculate
successively the numerical values of 4p(n) from the values of p(n) and so
ultimately from Fuler’s table. Using a Tauberian theorem, they also proved
an asymptotic formula correct up to the exponential order for gp(n) as

ap(n) ~ exp [w {gn (ﬁdl) }1/21 as n — 00. (3.4.39)

For partitions into unequal parts (d = 1) and for unrestricted partitions
(d — o0), the above result reduces to the Hardy-Ramanujan formulas
up to the exponential order. This formula (3.4.39) for the unrestricted
partitions is found to be very useful to determine the dominating term in
the expression for entropy of the corresponding thermodynamic system.

Subsequently, Dutta and Debnath (1959) also introduced a new parti-
tion function gp(n/m) representing the number of partitions of an integer n
into m parts with at most d repetitions of each part. They proved the gen-
erating function and congruence properties with examples. Several special
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cases of this partition functions are also discussed with examples. Finally,
it may be pertinent to mention that several authors (see Gupta (1980))
have also studied new types of partition functions and their properties for
possible applications.

3.5 Euler’s Contributions to Continued Fractions

Historically, continued fractions first occurred in ancient arithmetic in con-
nection with the approximation of irrational numbers by rational numbers.
They also originated from the Euclid algorithm for finding the greatest
common divisor of two integers a and b(a > b) so that a = agb+ ro, where
ag is the quotient and rq is the remainder. This can be expressed in the
form

a 1 1 1
—=a+ =a+—F =a+ ——. (3.5.1)
b — ay + o T
g v e (3)
The continuation of the Euclid algorithm leads to the continued fraction
1
4_ ap + ——— (3.5.2)
b ay + Gat
which is also written in the form
a 111
g — o =agial, A, 3.5.3
b @0 * a1 az as [CL() a@ “ ] ( )

An expression (finite or infinite) on the right hand side of (3.5.2) or
(3.5.3) is called a simple continued fraction, where ag, a1, az, -+, Gn, -+ -
are real or complex numbers with ap may be zero or non-zero, but all a,, # 0,
n > 1. The first few partial fractions or convergents of (3.5.3) are ¢y = ay,

1 = [ag; 1] = ao + 5=, 2 = [ag; a1, az)] :a0+( y = a0 + [y a0d

al as

in general,
1
en = lag;ar,az, -+ yan] =ag + —— .
[alaa2a"' aan]

An iteration process can be used to define

Pk = QkPk—1 + Pk—2 and k= 0xQr—1 + qr—2, k=0,1,2,--- n,
(3.5.4)

where p_o =0,p_1 =1,g-2 =1, g1 = 0 so that

&:[ao;al,---,an], n=0,1,2,---. (3.5.5)

qn
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An infinite continued fraction [ag; a1, a2, - ,an, -] is said to be con-

vergent if
lim 22 =q (3.5.6)
n—oo QTL

exists and a is called the value of the infinite continued fraction.

It can be shown that every real number a can be represented uniquely
by a continued fraction. In fact, every finite continued fraction represents
a rational number and every infinite continued fraction represents an irra-
tional number. For example, the irrational number /2 can be represented

by an infinite continued fraction. We write
1 1
V2=14—-, or 2=24+V2-1=2+=- (3.5.7)
x x

so that
1 1
V2=1+-—5=1+ —. (3.5.8)
2+5 2+2+—l

This process can be continued to generate the simple continued fraction

for v/2 as

V2=1[1;2,2,-], (3.5.9)
with the first few partial fractions

13717

1725 12’ '

In his famous 1655 book on Arithematica Infinitorum, the British math-

ematician, John Wallis gave an infinite product representation of % as

L T T (3.5.10)

He also stated in his book that Lord William Brouncker (1620-1684),
the first President of the Royal Society of London has expressed the product
(3.5.10) into continued fraction without proof in the form

4 1 9 25 49

Sl 2 5.11

™ +2+ 24 24+ 2+ - (3:5.11)
Any expression of the form

ap+— — —— e —— (3.5.12)
a1+ Qo+ A3+ QAp+
is called the gemeral continued fraction. The first few convergents are
b b
Co=aop, €1 =ao+—, Cx=ag+— — -,
ay ai+ az
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Based on earlier work of his predecessors, Euler began his research on
continued fractions and published many new ideas and results in his first
paper entitled, “De Fractionibus Continuis” in 1737. He also proved that
any rational number can be represented by a finite continued fraction and
found an infinite continued fraction representation for e in the following

form

NI S U S S U S
e = _— e —  ——_———— —— —
14+ 2+ 1+ 1+ 4+ 14+ 1+ 6+

=12;1,2,1,1,4,1,1,6,1,1,8,-- -], (3.5.13)
with the first few partial fractions
23 8 1 10 87
17173 47 77 32
Or, equivalently, decimal representations of these fractions are

2.00, 3.00, 2.666---, 2.75, 2.71428---, 2.71875, -- -,

so that the approximations get better and better. A continued fraction
representation of (e +1)/(e — 1) is
1 1 1 1
etl 24+ - — -
e—1 6+ 10+ 14+ -

Both (3.5.13) and (3.5.14) represent infinite continued fractions. Euler
2

(3.5.14)

proved that e and e* are irrational as they can be represented by infinite
continued fractions. He also gave many continued-fractions representations

of both rational and irrational numbers. His continued fractions for = were

1 9 25 49

=3+ — =2 3.5.15
T e Gt 6+ 64 (8.5.15)
71' 1 1223 34
=1 = =" 0.1
2 LT T i e (3:5.16)
71' 2 1335 57
Ty 222 . 3.5.17
R WH WHl Wil g (3:5.17)

In 1768, Lambert found a simple but irregularly behaved continued
fraction representation for 7 as

- 1 1 1 1 1 1 1 1 1 1 1 1
m = _—_— Y — — — — — — — — — —
T+ 154+ 1+ 292+ 1+ 1+ 1+ 24+ 14 3+ 1+ 14+ .-

=1[3;7,15,1,292,1,1,1,2,1,3,1,14,2,-- -], (3.5.18)
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with the first few partial fractions
3 22 333 355 103993
1771067 1137 331027
Euler proved another remarkable formula
(Ve)" +1
(Veyr =1
He also proved a theorem which states that a root of a quadratic equa-
tion is real if and only if it has a periodic continued fraction representation.

= [n;3n,5n,- -], n=1223---. (3.5.19)

For example \/5, \/ﬁ, /5 and /7 have infinite periodic continued frac-
tion representations in the form v2 = [1;2], V3 = [1;1,2], v/5 = [2;4],
V7 =[2;T,1,1,4] and v/10 = [3;6], where the period is indicated by over-
bar line.

On the other hand, the golden ratio x = 1(v/5—1), where 2 +2—1 =0
has the simplest periodic continued fraction representation

x=%(\/5—1):[0;1,1,1,1,---]:[O;T] (3.5.20)
with the first few partial fractions
0112 35 8 13
TTYYy Y
Similarly, the continued fraction of the golden ratio x is

p= (VB =L ] =T (35.21)

with the first few partial fractions
1 2 3 5 8 13
TT25 5 s
It follows from (3.5.5) that the approximate fractions (or convergents)

of a continued fraction for n =0, 1, 2, ---, are
Z—n = lao], [ao;a1], [ao;a1,az],---[ag;ay, - -an]--- . (3.5.22)

It can be shown that the best rational approximation of a real number
x satisfies the error estimate

x—&< 1

dn|  qn Qn+17

(3.5.23)

where the error depend on ¢,.
For example, v/2 = [1,2] which has the first few partial fractions

Pn 37 17 41
oo, S D 5.24
& 0 2'5712°29’ (3:5.24)



82 The Legacy of Leonhard Euler — A Tricentennial Tribute

It follows that % is the best rational approximation of v/2 with a denomi-
nator < 12 with the error estimate (3.5.23) given by

17 P3 1 1 _
Va— Lo lve-Bla - = <3(107%).
‘ 21 q3 | q3q4 12 x 29 ( )
For e = [2;1,2,1,1,4,1,1,-- -], the first few partial fractions are

pe 238111987 106 5525
¢, 1173477732 39
Then % is the best rational approximation for e with a denominator < 32
and the error estimate (3.5.23) is
L — 1 <1
T Q596 32 x 39
Similarly, the golden ratio z = 1 (\/5 —1) = [0,1] has a few approxi-
mate fractions

-3

q5

pn 011235 8 13 21

DI B IE R P T R R B B S 3526
g 17172737578 1372134 ( )
The best rational approximation of x is % with a denominator < 13 with

the error estimate

x_ézlx_@ < b1

= <4(107%).
13 ge | 4647 13 x 21 ( )

For m = [3;7,15,1,292,1,1,1,-- -] which has the first few partial frac-
tions

pn 3 22 333 355 103993
¢, 1° 77106’ 113’ 33102°
From the time of Archimedes, it is universally believed that % is the
best possible approximation of 7 as it occurred in the calculation of the
area and the perimeter of a circle. Indeed, it follows from the error estimate
(3.5.23) that % is the best possible rational approximation of = provided the
denominator of the fraction < 7. Surprisingly, a Chinese mathematician Zu
Chong-Zhi’s (A.D. 430-501) work contained 252 as the best approximation

(3.5.27)

113
of 7 if the denominator < 113 and the error estimate is
355 1 1
T——| < = <1076,
113 q3qs 113 x 33102

This means that % is the best possible rational approximation of m,
but % is not the best possible accurate value of .

The Euler constant « has a continued fraction expansion

y=10:1,1,2,1,2,1,4,3,-- ] (3.5.28)
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with the first few partial fractions

011 3 4 11 15

TR T
The determination of the optimal rational approximation of a real number
has an important and useful role in the theory of approximations. Sev-
eral optimal approximation theorems have been developed by many great
mathematicians. According to a 1958 Fields Prize Winner in Mathemat-
ics, Klaus Roth (1925- ) algebraic irrotational number can only be poorly
approximated by rational numbers, but transcendental numbers can be ac-
curately approximated by rational numbers. In 1955, he proved a celebrated
fundamental approximation theorem on algebraic irrational numbers by ra-
tionals.

Euler was the first mathematician who showed how to transform an
infinite series to a continued fraction representation of the series and con-
versely. In his 1754 paper on divergent series and his correspondence with
Nicholas Bernoulli, Euler first proved that the series

y=a— (1Na? + 2Nz — (3" + .- (3.5.29)
formally satisfies the ordinary differential equation
22y +y = (3.5.30)
He then obtained the integral solution of (5.3.30) in the form
T oget
= dt. 3.5.31
Y /0 1+t ( )

He went further to develop rules for transformation of series (3.5.29) into a

continued fraction representation in the form
r =z x 2r 2z 3x 3z
[Eu T wul vl e
He then substituted = 1 in the continued fraction (3.5.32) to calculate
a value of the divergent series

(3.5.32)

120431 — 4l 45 —.... (3.5.33)

3.6 Euler’s Contributions to Classical Algebra

Around 250 A.D., an ancient Greek mathematician, Diophantus of Alexan-
dria became very famous for his great and highly original works, Arithemat-
ica. It dealt with an analytical treatment of algebraic number theory and
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solutions of equations which are known as the Diophantine equations. In
addition, Arithematica contained many new theorems concerning the repre-
sentation of numbers as the sum of two, three or four squares. Fermat, Eu-
ler and Lagrange made considerable investigations of these representation
problems, and Diophantine equations which dealt with solutions in posi-
tive integers or rational numbers. In 1770, Euler published two-volume of
classical algebra entitled Vollstdndige Anleitung zur Algebra in which many
fundamental ideas and results of classical algebra have been included. In
addition, he investigated Diophantine equations and the algebraic theory
of numbers. In his work on algebra, Euler not only developed new con-
cepts and methods, but also introduced the ideas of birational equivalence
of curves over the field @ of rational numbers, and quite new results in the
arithmetic of elliptic curves.

Euler’s major interest in algebra originated from the Fermat Diophan-
tine equations (3.3.9). It is well known that Fermat claimed that the equa-
tion (3.3.9) has no solutions in integers x, y and z for n > 2. Many great
mathematicians since Fermat’s time have made serious attempt to prove the
Fermat Last Theorem, but they were unsuccessful. It is a great delight to
quote David Hilbert’s statement presented at the 1900 second International
Congress of Mathematicians in Paris as follows:

“It is well known that Fermat claimed that the Diophantine equation

2ty =2"

- with trivial exceptions - has no solutions in integers x, y, z. The prob-
lem of showing this non-solvability result gives an excellent example of how
a special and seemingly meaningless problem can give incredible impetus
to scientific research. In fact, roused by the challenge of this Fermat con-
jecture, Kummer was led to his introduction of ideal numbers and to the
discovery of the theorem of the unique decomposition of numbers of a cy-
clotomic field into ideal prime factors — a theorem which, in the form of
the generalization of the result due to Dedekind and Kronecker to general
algebraic systems, is at the heart of modern number theory and has impor-
tance far beyond the boundaries of number theory in the areas of algebra
and function theory.”

It may be interesting to point out that, for n = 2, equation (3.3.9)
reduces to the famous Pythagorean equation x> + y?> = z? which has infi-
nite number of integral solutions including (3,4,5), (5,12,13), (8,15,17),
(12,35,37). More generally, (x,y, 2) is a primitive Pythagorean triple if and
only if

(x,y,2) =(r+t, s+t, r+s+t), (3.6.1)
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where 7, s, t are some integers satisfying ged (r, s) = 1 and t? = 2rs. It can
be shown that if x, y, z are all positive, then r, s, t are also positive and
vice versa. On the other hand, if (z,y, z) is a given Pythagorean triple, the
related integers r, s, t are given by
r=z-y, s=z-—-zx, t=z+y-—z. (3.6.2)
Conversely, there are infinitely many pairs of consecutive positive integers
such that one is an odd square and the other is twice a square. It was proved
by Fermat that there are infinitely many Pythagorean triples (z,y, z) such
that z—y = £1. So, the related r and s satisfying r—s = x—y = +1 can be
generated with the above requirements. It turns out that the Pythagorean
triples with positive entries must be of the form (3.6.1) with r = 2u? and
s = v? (or vice versa) for some u, v € Z with odd v. Furthermore, t? =
2rs = (2uv)? and so, t = 2uv. Putting m = u + v and n = u gives the
standard representation of primitive Pythagorean triples of the form
(z,y,2) = (2mn, m* —n?, m? 4+ n?) (3.6.3)
provided (m,n) = 1 and 0 < n < m. If z, y, and z are relatively prime
integers such that z? + y? = 22 with y and z odd and z even, there exist
integers m and n such that 2 = 2mn, y = m? —n? and z = m? + n2. This
can be proved by writing 22 = 22 — y? = (2 + y)(z — y) = m?n? for some
m and n so that z +y = m? and z —y = n2. This gives 2z = m2 4+ n?
and 2y = m? — n? and hence, (22)% = (22)? — (2y)? = (2mn)? and then
2¢ = 2mn. There are similar representations of 2% 4+ y? = 22, where
x=(2n>+2n), y = 2n+ 1) and 2 = (2n? + 2n + 1), and x = 2m,
y=(m?—1)and z = (m? +1).
Another related question is the area of the right-angled triangle with
sides z, y and z given by

A = % xy = mn(m + n)(m — n). (3.6.4)

Since one of m and n must be even as m + n is odd, and one of m, n,
(m? — n?) must be divisible by 3, the area A must be divisible by 6. So,
the question is how few prime factors can (A/6) have? The area A given
by (3.6.4) is the product of four factors which are linear polynomials in
m and n. Thus, there can only be a finite number of pairs m and n for
which (A/6) has fewer than three prime factors. For the triangle, (3,4, 5),
(A/6) = 1, and for the triangle, (5,12,13), (A/6) = 5 which has only
one prime factor. For the only triangles, (8,15,17), (7,24, 25), (12, 35,37),
(20,21,29), (11,60,61), and (13,84,85), (A/6) has exactly two prime fac-
tors. According to Granville (2008), there are infinitely many Pythagorean
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triples for which (A/6) has exactly three prime factors. This has not yet
been proved.

If P is a perfect number, then there exist positive integers x, y and z
such that t <y < zand P =2 +y+zand (x+y, v+ 2, y+2)isa
Pythagorean triple. In other words,

(+y)?+(x+2)%=(y+2)> (3.6.5)

According to result (3.6.3), (x+vy, x+ 2, y+2z) would be a Pythagorean
triple provided that there exist relatively prime positive integers m and
n (0 < n < m) such that

(x+y, z+ 2z, y+2) = (2mn, m*> —n? m? +n?). (3.6.6)
Consequently,
x=n(m—n), y=n(m+n), z=m(m-—n), (3.6.7)

and P=x+4y+ z=m(m+n).

Since P is an even perfect number, P = M, - 2P~ where M, = 2P — 1
is a Mersenne prime and p is a prime. So, P = (27 — 1)2P~1 = m(m + n).
Since m and n are relatively primes, m = 2°~! and m +n = 27 — 1 or
n=2P~1 — 1. Thus,

r= 21t -1), y=@2r-1)(2r*t-1), z=2""1 (3.6.8)

This confirms that (x +y,  + z, y + 2) is a Pythagorean triple.

The next natural question is whether there are Pythagorean triples over
the ring Z[i] of Gaussian integers. If (x,y, z) is a Pythagorean triple, then
(z,iz,iy) and (z,iz,y) are also Pythagorean triples. More generally, there
are many Pythagorean triples over Z[i] including (x,y, z) = (1+2i,2414,2+
2i), (24 24,2 —14,241), (T+4i,4+14,8+ 4i) and (6 + 13¢,3 4 18,6 + 221).

It is interesting to note that Fermat used the method of infinite descent
to prove that there cannot be a Pythagorean triangle (a* 4+ b? = ¢?) whose
area A\ = %ab is the square of an integer. However, if there is a solution of
(3.3.9) for n = 4, then a? +b* = ¢? and A = 1ab = d? hold. We assume
that there is a solution of z* 4+ y* = z*. In terms of this solution, we set
a=y* b=22222 and ¢ = z* + z* and d = z2zy? so that a® + b? = 2 holds.
Thus,

1
A = Eab =222yt = (xzy2)2 =d> (3.6.9)

Hence the assumption that the equation z* 4+ y* = 2* has a solution must
be false. So far, no example has yet been found.
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2 2

Fermat rediscovered another diophantine equation 22 —ny? =1 or 2% —
ny? = m where n and m are integers with n not a perfect square and proved
that this equation has an infinite number of integer solutions (z,y). Based
on Fermat’s work on this equation, Euler erroneously named the equation
as Pell’s equation

z? —ny? =1, (3.6.10)
where n is not a perfect square, and worked extensively on this equation.
He found the relation between the fundamental solution to the continued
fraction of v/n as well as the period of the continued fraction for quadratic
irrationalities. Euler also obtained the fundamental solutions for a wide
range of numerical values of n. Indeed, the seventh century Indian Hindu
mathematician, Brahmagupta showed that (z,y) is a solution of (3.6.10),
then (x2 + ny?, 2xy) is also a solution because (x2 + ny2)2 —n(2zy)? =
(x2 — ny2)2 =1.

Euler and Lagrange proved many special Diophantine equations and
also showed that certain primes can be expressed in particular ways. In
1754, Euler proved the Fermat result that every prime of the form 4n + 1
can be represented uniquely as a sum of two squares. He also proved that
2% + y* = 22 has no solution in positive integers. On the other hand, he
showed that a prime of the form 3n + 1 can be represented uniquely in the
form 22 4 3y2. Clearly, some integers n can be expressed as the sum of two
or three or four squares or even as just one square. However, in 1770, both
Fuler and Lagrange proved that any positive integer can be expressed as
the sum of four squares, that is, n = 2% + y* + 22 + w?. It is not necessary
to use four squares in order to represent a positive integer n, but merely
that four squares are always sufficient. For example,

15 =12 +22+3% +12, 22 =12 +1%2 422 4+ 42,
17=124+4>=22+2%2 4+ 32,

51 =143 44> +5> =12+ 17+ 7> = 1 + 5% + 52,
81 =22 +22+32+8° =17+ 4+ 8 =9

The four square representation problem is a particular case of a more
general representation problem known as the Waring Problem (Conjecture)
formulated by Edward Waring, Lucasian Professor of Mathematics at the
University of Cambridge, England. In his 1770 book entitled Meditationes
Algebraicae, Waring stated that every positive integer n can be represented
as the sum of at most k mth powers in the form

n=acl" +zy +- -+, (3.6.11)
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where z1, za, ---, x) are nonnegative integers and k¥ = f(m). In other
words, given a positive integer n and m > 2, there is a smallest positive
integer k = f(m) such that the Diophantine equation (3.6.11) has integral
solutions x1, 2, - -+, . Evidently, it follows from the four square problem
that f(2) = 4 (four squares). Waring made a conjecture about f(3) and
f(4). Based on limited numerical evidence, he found f(3) = 9 (nine cubes).
Waring did not provide any proof of his conjecture. In 1909, David Hilbert
proved the Waring problem and showed also that f(m) is finite for all m,
but his proof provided no method how to compute f(m). However, recent
result gives the lower bound for f(m) in the form

3

Flm) > (2™ —2) + Kﬁm] for all m > 2, (3.6.12)

where [m] is the standard symbol for the greatest integer < m. In 1992, it
was proved that f(4) = 19 (19 fourth powers). In 1939, it was also proved
that 23 and 239 are the only integers that require nine cubes. In 1943, Yu
V. Linnik (1915-1972) proved that only finitely many integers require eight
cubes. It seems that the Waring problem has not been completely solved,
although some but slow progress has been made on this problem.

Euler made an extensive study of different types of Diophantine equa-
tions such as y? = ax3+b?, y? = ax?+bx+c, where a, b, ¢, are integers with
a > 0 and not a perfect square. More generally, he investigated equations
of the form

A2? +2Bry+ Cy? + Dx + Ey+ F =0, (3.6.13)

where the discriminant D* = B2 — AC > 0 and not a square.

From the seventeenth century, the theory of equations dealing with the
solution of polynomial equations was a major subject in classical algebra.
The main interest was in developing better methods of solving equations of
any degree, finding better methods of approximation of roots of equations
and in proving the existence theorem that every nth degree polynomial
equation has n roots. Many great mathematicians made contributions to
this subject. Most notably among them are Euler and d’Alembert who
spent considerable time and energy in discovering new ideas and results.
In particular, Euler began his research with the idea that every polyno-
mial with real coefficients can be decomposed into product of linear and
quadratic factors with real coefficients. The solution of quadratic equa-
tion az? + bx + ¢ = 0 by the method of completing the square had been
known since ancient times, and the only progress in this equation until
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1500 was made by the Indian mathematicians. They developed the cel-
ebrated method for finding the roots a and g of the quadratic equation
ax? 4 br 4 ¢ = 0 as follows:

0=ar’+br+c=a(z—a)(z—pB)=al2’— (a+B)z+ab], (3.6.14)

where o and ( are related by the formulas

b
a+pf=—— and aff = < (3.6.15)
a a
Using the so called polarization identity
4o = (a + B)? — (o — B)?, (3.6.16)
formulas (3.6.15) are replaced by the linear relations
b 1
a—i—ﬁ:—a and a—ﬁ::ta\/bQ—élac, (3.6.17)

so that the roots are given by the celebrated formulas

5 —b+ Vb2 — dac
a,f=—"
’ 2a

Thus, this classical approach to solving the quadratic equation required

(3.6.18)

the four basic algebraic operations of addition, subtraction, multiplication,
division and the square root extraction which is called solution by radicals.
It is noted here that although the roots of the quadratic equation appear
symmetrically in the equation, but the symmetry is broken due to the
square root taken in the polarization identity. Thus, the solution of a
quadratic equation leads to a linear system of equations (3.6.17) for its
roots o and § which can easily be solved.

This was followed by considerable attention given to the solution of third
degree (cubic) and fourth degree (quartic) equations by European mathe-
maticians including Scipione dal Ferro (1465-1526), Niccolo Tartaglia (1500-
1557), Girolamo Cardano, Ludovico Ferrari (1522-1565), Rafael Bombelli
(1526-1572), Francois Viete and Ehrenfried von Tschirnhaus (1652-1708).
In solving cubic and quartic equations, their work was a major milestone
in the history of classical algebra. Like the quadratic formula (3.6.18), the
roots of cubic and quartic equations can be expressed in terms of their
coeflicients. The systematic approach to finding a substitution that would
eliminate both the linear and quadratic terms in the cubic equation, and the
attempt to develop a similar rearrangement to reduce the quartic equation
to root extractions led to the idea of a resolvent, an asymmetric function
of the roots that assumes fewer values when the roots are permuted than
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there are roots. It was obvious that problems became more complicated as
attempts were made to solve polynomial equations of even higher degrees.
Up to this point, the classical approach had been algebraic as algebraic
substitutions were used to reduce the equations to a simpler form. More
precisely, the quadratic equation az? + bx + ¢ = 0 can be reduced to a
simpler equation z2 = N by the substitution z = z + (%) Tschirn-
haus discovered that a general cubic equation 2® + pz + ¢ = 0 can be
transformed into a simpler equation z* = N by a substitution of the form
z = 22 + rx + s for suitable constants r and s which can be found by
solving only linear and quadratic equations. Similarly, a general quartic
equation az* + bz + cx? + dx + e = 0 can be reduced to the equation
4 = p2? 4 gz + r by the substitution z = z — (b/4a). Cardano and Ferrari
had shown that the quartic equation can be solved by reducing it either to
a linear and a cubic or two quadratic equations. In the meantime, complex
numbers began to gain acceptance as possible roots of polynomial equations
and attempts had been made to develop algebraic methods for solving all
polynomial equations.
Cardano’s treatment of cubic equation x® + Az? + Bz + C = 0 can
briefly be described as follows. The substitution of x = y — %A reduces it
to a simpler cubic equation in the form

v’ +ay+b=0. (3.6.19)

Introducing p = ,3/—3 +d, and q¢ = ,/—— d, where d = 41/ (%) (3)2,

Cardano’s solutions of three roots are given by 1 = p + q — %, (z2,23) =
~Lo+9) -4 +iLp+a)

On the other hand, Viete also investigated both cubic and quartic equa-
tions, and simplified Cardano’s treatment of cubic equation (3.6.19) by the

substitution y = (z — 5£) to obtain the quadratic equation in z* as
3 a’®
=53 +b= (3.6.20)
The roots of this quadratic equation is given by
b a® b2
3
=—+4/—=4+—=N . 3.6.21
2=ty [T D Ny (3.6.21)

Viete’s treatment of quartic equations was somewhat similar to that of Fer-
rari, but more direct that Ferrari’s method. Viete’s extraordinary trigono-
metrical skills helped him to deal with Cardano’s casus irreducibilis of the
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cubic equation with three real roots. Putting z = cosf in the identity
cos30 = 4 cos® @ — 3 cosf led to the cubic equation

3 1
o =0. 6.22
=g 4c0839 0 (3.6.22)

3

Introducing * = nz, n is an arbitrary constant, in z° — ax — b = 0 gives

3_ 4@ b _
so that equating the coefficients of (3.6.22) and (3.6.23) gives n = /3¢ and
cos30 = (4b/n3) = 1b/./(a3/27). Vitte obtained the values of n = 2v/5
and cos 30 = (2/5\/5) involved in a particular cubic equation x3 = 15z + 4,
and then determined three real roots 1 = ncos =4, (x1,x2) = -2+ V3.
Viete also derived the first exact formula for 7 using the trigonometric

identity
. .0 0 5 . 0 0 0
sinf = 2sm§ cos 3= 27 sin <§) cos (§> cos (5) ,

= 2" sin (;in) cos <g) cos <%) ... CoS (%) )
so that
nf {Sir(la(/ez/f)n)} {COS @) cos (%) e eos (;)} (3.6.24)

In the limit as n — oo with 6 = 7/2, (3.6.24) reduces to

—= cosg cosg cos 17T—6 e (3.6.25)
Since cos & = /4 (1 + cosa), (3.6.25) becomes

2
——P1P2P3

\[ 1+ 1+\/g x -+, (3.6.26)

where p; = \/g, and pry1 = 1/3 (14 pn).

Indeed, both Paolo Ruffini (1765-1822) in 1799 and Niels H. Abel (1802-
1829) in 1824 clearly demonstrated that the general quintic equation can-
not be solved by a single algebraic formula in terms of its coefficients.
Abel proved a celebrated theorem on the non-solvability of the general
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quintic equation and the equations of higher degree by radicals. He also
generalized the work of Gauss on the cyclotomic (circle-splitting) equation
2" 4+ 2" 4+ ...+ 2+ 1 = 0 which led Gauss to the construction of the
17-sided regular polygon using a ruler and a compass. Abel proved that if
every root of an polynomial equation can be generated by applying a given
rational function successively to a single (premitive) root, such equation
can be solved by radicals. Any two permutations that retain this function
invariant must commute with each other. Any group whose elements com-
mute is called an Abelian group. The investigation of solutions of algebraic
equations was then completed by the breakthrough of the French mathe-
matician Everisté Galois (1811-1832) who created a magnificent branch of
mathematics known as Abstract Algebra, in particular, a part of it called the
Galois theory, which expresses the solvability of an algebraic equation by
radicals in terms of a group of permutations. The Galois theory includes as
2
¢ is a primitive pth root of unity and p is an odd prime, and the con-
struction of regular polygon as well as the Abel celebrated theorem on the
non-solvability of the general polynomial equation of fifth and higher de-
grees by radicals. Since no algebraic formulas could be found to express
the roots of a general quintic equation, a search continued for transcen-
dental formula which were discovered by Charles Hermite (1822-1900) in
1858 and by Leopold Kronecker (1823-1891) in 1861. Such formulas in-
volved elliptic integrals whose symmetric property had been investigated
by Abel and others. Galois also mentioned some link between a algebraic
equation and transcendental functions. Subsequently, Hermite successfully

special cases results of Gauss’ cyclotomic fields, @ (C = exp (2’”)), where

completed Galois’ investigations in solving the quintic equation by means
of the elliptic modular functions (see Dutta and Debnath (1965)). Camille
Jordan (1838-1922) developed a general theory of groups of permutations
governing the behavior of such transcendental functions.

Inspired by major contributions of his predecessors to the theory of
equations, Gauss considered the polynomial equation

2 —1=0. (3.6.27)

This is a algebraic version of the geometrical problem of constructing a
regular polygon of n sides. He provided a remarkable proof to determine
which regular polygons can be constructed by Euclidean methods (by a ruler
and a compass) and which cannot. It turns out that a polygon of n sides can
be constructed using a ruler and a compass if and only if n = 2™p1ps - - - ps-,
where m is a non-negative integer, and p, are distinct Fermat primes of the
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form F, =22 +1,r =0, 1,2, ---. Only five such primes F, are known: 3,
5,17, 257,65, 537, corresponding to r = 0, 1, 2, 3 and 4. Gauss proved that a
Euclidean solution of (3.6.27) is possible if and only if p is a Fermat prime.
The equation (3.6.27) for n = p is called cyclotomic equation. The set
of complex solutions of this equation contains the number 1, and divides
the unit circle into n equal parts. Before discussing Gauss’ method of
construction of the 17-sided (F» = 17) regular polygon, it is helpful to
consider of Fy = 3 which corresponds to an equilateral triangle that is
easy to construct. The next simplest case of F; = 5 which corresponds to
a regular pentagon. This is equivalent to the solution of the cyclotomic
equation

P 1=0-DE"+2+22+2+1)=0 (3.6.28)
so that the real root is z = 1 and four other roots satisfy the equation
APzl =42+ 1+ 42 =0. (3.6.29)
Introducing a new variable w = z + 271, (3.6.29) satisfies the quadratic
equation
w?+w—1=0. (3.6.30)
Obviously, z can be obtained from the roots of (3.6.29) by solving the second
quadratic equation, w = z + 27!, that is,
2

z°—wz+1=0. (3.6.31)

Thus, equation (3.6.28) can be solved by extracting square roots only, and
a regular pentagon can be constructed by using a ruler and a compass.

The case of n = p = 17 = 2% 4+ 1 corresponds to the solution of the
equation

AT 1= -D)EC P2 1) =0, (3.6.32)

Writing 217 — 1 = 217 — 2™ = 0, where k is an integer so that the
roots are

2mik 27k .. [ 27k

2 = exp < T > = cos <1—7> + isin (1—7) , (3.6.33)

where £k =0, 1, 2, ---, 16. It is noted that zg = 1, 2 = z{“ and 2174k = 2k
with integral n, and z17_; = z,;l fork=1,2,---, 16.

The problem can be solved from the value of

1 2
= — =2 =, 3.6.34
21+ 216 = 21+ - COS<17> ( )
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where 6 = (2Z) represents the angle between any two consecutive sixteen
points on the unit circle with center at the origin. Gauss discovered an
ingenious method for organizing the 16 roots of (3.6.32) in a particular
order, and then decompose the ordered sum into sums (called periods)
containing 8, 4 and 2 respectively, and to do this in such a way that the
values of the periods can be computed successively as the roots of quadratic
equations. Gauss also provided a method of finding a primitive root of the
associated congruence a® — 1 = 0 (mod 17). The number s is called a
primitive root if the congruence has a solution for s = 17 — 1 = 16 but no
smaller value of s. Thus, a = 3 is a primitive root and 3! = 1 (mod 17).
Without any further elaborate discussion of the remaining steps, we make
reference to Appendix 5 of Hollingdale (1989) for details, and then state
the side length, ¢ of the 17-sided regular polygon as

é [—1+\/ﬁ+\/34—2x/1—7
+ \/684—12\/1—7—16\/34+2\/ﬁ+2(—1+\/1—7)\/34—2\/1—7] .

(3.6.35)

This seems to be a complicated expression, but it contains only square
roots and no other irrational numbers. Thus, the 17-sided regular polygon
can be constructed using a ruler and a compass only. This was indeed
one of the monumental discoveries of Gauss when he was 19 years old,
and this was the first (and only) advance on the problem of constructing a
regular polygon since the Greek mathematics. Gauss was so proud of his
discovery that he left an instruction to engrave a regular 17-sided polygon
on his grave. Although his wish was never fulfilled, such a polygon was
indeed inscribed on the side of the monument erected at his birthplace in
Brunswick, Germany.

In order to develop a unified approach to finding solutions of polynomial
equations of all degrees, Euler published a paper entitled ‘De resolutione
aequationum cuiusque gradus’ (On the solution of equations of any degree)
in 1762. In this paper, he proposed the solution of equation of nth degree
in the form

r= VA + VA + -+ YA, _1, (3.6.36)

where A1, Ao, ---, A,_1 are the roots of a resolvant equation of degree
(n—1). Thirty years later, he suggested an alternative formula of the same
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kind as
z=w+ A0+ BVv2 4+ Q Vo1, (3.6.37)
where w is real, v, and the coefficients A, ---, @ can be determined by a

method similar to Tschirnhaus’ transformations. Such a form for the gen-
eral solution of the quintic equation was employed by Abel in his proof
which confirmed that no such solution could exist. Euler described a
method of a general quartic equation

zt +ax® + b’ 4 cx +d=0, (3.6.38)
which can be reduced by the transformation y = x + ¢ into the form
v 4y +qy+r=0. (3.6.39)

The behavior of solutions of this quartic depends on the behavior of solu-
tions of the resolvant cubic equation

224+ 2% + (p2 — 41“) z—q¢*=0. (3.6.40)

Both Euler and d’Alembert made considerable progress in the under-
standing of general polynomial equations with methods of solutions. Euler
observed that a quintic equation cannot be solved by algebraic methods.
As stated earlier, both Abel and Galois provided a rigorous proof of this
observation.

One of the major result in classical algebra is the celebrated Funda-
mental Theorem of Algebra which states that every nth degree algebraic
equation

nx™ + ap_12" P+ 4 a1z 4 ag =0, (3.6.41)

where a,,, a,_1, ---, a1, and ag are real numbers, has at least one real
or complex root. This theorem was first formulated by A. Girard (1595-
1632) in 1629 and then a rigorous formulation of this theorem was given
by a great mathematician and philosopher, René Descartes in 1637, but its
first proof was published by d’Alembert in 1746. In the same year, Euler
presented his proof of this theorem at the Berlin Academy of Sciences. In
his dissertation in 1799, Friedrich Gauss provided a first complete proof of
the fundamental theorem of algebra based on the fact that the complex
numbers are algebraically closed. Thus, Gauss proved the existence of the
root of the equation (3.6.41), but he had doubt about the finding of an
algebraic method of computing it from the coefficients of (3.6.41). It is
important to note that the fundamental theorem of algebra is really an
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easy theorem to prove using the theory of complex functions of a complex
variable, but a pure algebraic proof is a totally different matter.

In his celebrated work on number theory and algebra, Euler extensively
investigated four major topics including the theory of congruences, alge-
braic numbers, Diophantine equations, and the law of quadratic reciprocity.
Indeed, the law of quadratic reciprocity is perhaps one of the most origi-
nal and fundamental discovery of the eighteenth century in number theory
and algebra. This law is based on the ideas of congruences and quadratic
residues which appeared in the works of Euler, Lagrange and Legendre.
The symbol a = b (mod m) read as the number a is congruent to b modulo
m means that a —b is exactly divisible by m, where a, b, and m are integers.
Then, b is called a residue of a modulo m.

The general quadratic (second-order) congruence with an odd prime
modulus p is

az’ +br+c=0 (mod p), (3.6.42)

where p does not divide a (p { a). If we write (3.6.42) as 4a (az? + ba + ¢) =
0 (mod p), or equivalently as (2az + b)* + (4ac — b*) = 0 (mod p). This is
equivalent to the system
X2=A (mod p)
(3.6.43ab)
20 +b=X (mod p)

where A = b? — 4ac (mod p). Since p { A, the congruence (3.6.43b) has
a unique solution x = xy (mod p), and hence, the solution of the original
quadratic congruence (3.6.42) reduces to that solving (3.6.43a).

In the language introduced by Euler in 1754 and then adopted by Gauss,
if p is prime and a is an integer such that p 1 a, and if the quadratic congru-
ence 2 = a (mod p) has a solution, then a is called a quadratic residue of
prime p. If no solution exists, then a is called a quadratic nonresidue of p.
For example, if ¢ = 4 and p = 5, the congruence is solvable with solutions
are 2,3, 7, ---, but if a = 3, it is not.

It is important to observe that algebraic results for polynomial congru-
ences are somewhat similar to those of polynomial equations if the moduli
are prime numbers. This leads to the generalization of the Fundamental
Theorem of Algebra to an arbitrary field F due to Lagrange. If F[z] is the
set of all polynomials in x with coefficients in F, then a nonzero polynomial
f(z) € F[z] of degree n can have at most n zeros in F. As a corollary, we
can state that if a polynomial f(z) of degree n, is not identically congruent
to 0 modulo prime p, then f(z) =0 (mod p) has at most n roots.
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In his book entitled Essai sur la Théorie des nombres published in 1798,
a French mathematician Adrian-Marie Legendre (1752-1833) introduced the

symbol that is now known as the Legendre symbol, %):

+1if ais a quadratic residue modulo p > 2,

(E): 0 if pla,
p

—11if ais a quadratic nonresidue modulo p > 2.

The Legendre symbol is not defined for p = 2. Because of the multiplication
rule for residues, it turns out

O B-() e

However, Euler developed a criterion for a number a to be a quadratic
residues without using the Legendre symbol. More importantly, in his works
published in 1751 and 1783, Euler conjectured what is now known as the
law of quadratic reciprocity. This law expresses an elegant and reciprocal
relationship between the pair of congruences:

2 =p (mod q) and P =q (mod p) (3.6.45ab)

where both p and ¢ are odd primes.

In order to give an equivalent statement of this law, we introduce an
integer n = 2(p — 1) - 3(¢ — 1). The law states that if n is odd, then one
and only one of the congruences (3.6.45ab) is solvable, and if n is even,
then either both or neither of the congruences are solvable. For example,
if p =7 and ¢ = 13 so that n = 18, then both congruences (3.6.45ab) are
solvable. On the other hand, if p = 5 and ¢ = 13 giving n = 12, the law
states that either both or neither congruences (3.6.45ab) are solvable. In
fact, neither is solvable. If p = 3 and ¢ = 7, then n = 3. Thus, (3.6.45b) is
solvable, but (3.6.45a) is not solvable. Examples including p = 3, ¢ = 11;
p="7,q="5;and p =25, ¢ =11 are left for the reader as exercises.

In symbolic form, Euler’s law of quadratic reciprocity can elegantly be

stated as
OE-cn o

where n = 1(p — 1) (¢ — 1). This means that if the exponent n of (—1) is
even, p is a quadratic residue of ¢ and vice-versa, or neither is a quadratic
residue of the other. When the exponent is odd, which occurs when p and ¢



98 The Legacy of Leonhard Euler — A Tricentennial Tribute

are of the form 4k + 3, one prime would be a quadratic residue of the other,
but not the second of the first. On the other hand, if at least one of p, ¢
is a (4k + 3)-prime, then at least one of 2(p — 1), 3(g — 1) is even, and so,
(=1)™ = +1. This implies that the two Legendre symbols are either both
+1 or both —1. Of particular interest are the following special cases:

<_%) _ (—1)30D), (3.6.47)

which was found, in a general form, as the Euler criterion

(%) ) (3.6.48)

that is, 2 is a quadratic residue if and only if p = +1 (mod 8).

Historically, the law of quadratic reciprocity was discovered empirically
and independently by Euler in 1722 and Legendre in 1785. In 1796, Gauss
not only stated this law in elegant form, but gave several complete proofs,
and hence, it is now known as the Gauss quadratic reciprocity law. In
order to extend the law to higher powers, Gauss discovered the Gaussian
integers, that is, complex numbers of the form m + ny/—1. Gauss proved
that the fundamental ideas of prime and composite number make sense in
this context just as in the ordinary integers and that every such number has
a unique representation up to multiplication by 1 and ++/—1 as a product
of irreducible factors. In fact, a prime number of the form 4k + 1 cannot
be prime in this context, as it is a sum of two squares: 4k + 1 = p?2 + ¢ =
(p+qv/—1) (p—qv/—1). This kind of generalization of the concept of prime
number to the Gaussian integers is an early classic example of numerous
generalization and abstraction in modern mathematics.

The Euler criterion can be used to test quadratic residue. More pre-
cisely, the integer a, (a,p) = 1, is a quadratic residue of modulo odd p, that

a

is, (5) =1, if and only if

az® 1) =1 (mod p), (3.6.49)
it is a quadratic nonresidue if and only if
@z = 1 (mod p). (3.6.50)

Euler’s formulation of quadratic reciprocity law is a special case of Emil
Artin’s (1896-1962) general reciprocity law for quadratic number fields, and
Peter Gustav Dirichlet’s (1804-1851) quadratic reciprocity law



Euler’s Contributions to Number Theory and Algebra 99

where (x(s) is Richard Dedekind’s (1831-1916) zeta function of a number
field K, ((s) is the Riemann zeta function and L(s, x) = > oo, x(n)n™* is
the Dirichlet L-function attached to a quadratic character y mod gq.

David Hilbert generalized the quadratic reciprocity law to algebraic
number fields in terms of the Hilbert symbol in the form

11 (a—b> =1, (3.6.52)

- b

where the product is over all primes including p = oo and for a, b € @),
the Hilbert symbol is defined by

+1 if az? 4 by? — 2* has a solution (z,y,2) € @3,

—1 otherwise.

Hilbert also proved that if p is an odd prime and a is not divisible by p, his

symbol satisfies
b vp(b)
<“—) - (3) , (3.6.53)
p p

where 1v,(b) is the exponent to which p appears in the prime factorization
of b. If a, b are two distinct primes p, ¢, the Euler law (3.6.46) follows from

Hilbert’s law (3.6.52) together with (3.6.53).

In the case of p = oo, (%’) = 1 if and only if ¢ and b are not both

negative, that is, if the equation az? + by? — 22 = 0 has solutions in real
number for fixed a and b. Thus, the Hilbert product makes sense in view
of the fact that (%’b) = 1 for fixed a and b and for all but finitely many
primes p. However, problems arise only when multiplication by a or b leads
to many of these quadratic residues. For example, if a and b are positive
primes, then only these two primes contribute to the product so that the
two resulting factors can be associated with (%) and (2) which leads to
the quadratic reciprocity law.

Finally, around 1770, Euler introduced an Fuler Brick which is simply
a rectangular box (or cuboid) in which all of three sides a, b, ¢ have integer
values and in which all three diagonals

dap = Va2 +b2, dpe=Vb>+canddeq =V %+ a? (3.6.54)
are also integers as shown in Figure 3.4, where @ > b > c¢. The smallest
Euler brick has sides (a,b,¢) = (240,117,44) with d,, = 267, dp. = 125
and d., = 244. Other Euler’s bricks are found including (275, 252, 240),
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(693,480, 140), (720,132,85) and (792,231,160) which are listed by Guy
(1994). Kraitchik obtained 257 Euler’s bricks with the odd side less than
1 million, whereas Helenius has compiled a list of the 5003 smallest (mea-
sured by the longest side) Euler bricks. In 1740, N. Saunderson obtained a
parametric solution for some Euler bricks (but not all possible Euler bricks).
In 1770 and 1772, Euler discovered two parametric solutions which did not
produce all possible solutions. If (a’, ¥, ¢’) is a Pythogorean triple, then

(a,b,c) = [d/(4b” — ), b/ (4a”* — ¢%),4d'V '] (3.6.55)

is a Euler brick with face diagonals d,;, = ¢3, dy. = b(4a’? + ¢?) and
deo = a' (40" + ¢?) (see Dickson (2005)). If (a, b, c) is a given Euler brick,
then (be, ca, ab) is also an Euler brick.

A perfect Euler brick (or a perfect cuboid) of sides a, b, ¢ (a > b > ¢) is
an Euler brick in which the length va2 + b2 + ¢2 of the space diagonal is
also an integer. It is not yet known whether a perfect Euler brick exists as
there is no example of a perfect cuboid found. A major question relating to
the existence of perfect cuboid’s remains unsolved. However, an extensive
computer search for the integer cuboids revealed that the smallest side of
a perfect cuboid is at least 4.3 billion. A lot of recent computations also
revealed that two of the three face diagonals and space diagonal are integers.

dpe

b dab

a

Fig. 3.4 Euler’s brick.



Chapter 4

Euler’s Contributions to Geometry
and Spherical Trigonometry

“Although the Greeks worked fruitfully, not only in geometry
but also in the most varied fields of mathematics, nevertheless
we today have gone beyond them everywhere and certainly also
in geometry.”

Fleix Klein

“Geometry is useful not only in algebra, analysis, and cosmol-
ogy, but also in kinematics and crystallography (where it is
associated with the theory of groups), in statistics (where fi-
nite geometries help in the design of experiments), and even in
botany.”

H. S. M. Cozeter

4.1 Introduction

Euler was fully inspired by the Euclid monumental work The Elements
which is by far the most influential work in geometry, classical algebra,
number theory and the remarkable model for the axiomatic method in
mathematics. He was motivated by René Descartes’ book Discours de la
Meéthod (Lecture on the method) in which Descartes founded analytic ge-
ometry as a synthesis of geometry and algebra. This marked the beginning
of the golden age of modern mathematics.

Throughout this chapter, we describe a triangle ABC' by its three angles
A, B, C, and three sides BC' = a, CA = b and AB = c¢ so that the sum
of three angles, (A + B 4+ C) = 180° = m. We denote the perimeter of the
triangle ABC' by 2s = (a+ b+ ¢) and the area by AABC, or simply by A.

101
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4.2 Euler’s Work in Plane Geometry

In modern plane geometry, the fundamental concept of length (or distance)
of a line segment was introduced with a magnitude as well as a sign. If
A and B are two distinct points on a straight line, as shown in Figure 4.1
(a), the directed line segments AB and BA are equal in magnitude, but
opposite in sign. Obviously, the line segments AB and BA are expressed
by the equation

AB = —BA, AB =0B - OA. (4.2.1)
Or, equivalently, the fundamental formulas are
AB+ BA=0, AB = A0 + OB. (4.2.2)

So, AO + OB implies that the point travels from A to O and then from O
to B, and hence, the point is moved from A to B.

If A, B and C are distinct points on a straight line, as shown in Figure
4.1 (b), then

AB + BC + CA =0. (4.2.3)

Euler’s Theorem 4.2.1. If A, B, C' and D are distinct points on a
straight line, as shown in Figure 4.1 (b), then the following identity holds
among the line segments determined by these points

AB-CD+ AC-DB+ BC - AD = 0. (4.2.4)

The proof of this theorem follows from the following representation of
the left hand side of (4.2.4) as

(AD-BD)-CD+ (AD - CD)-DB+ (BD—-CD)- AD. (4.2.5)
Or,

(AD + DB)-CD + (AD — CD)- DB — (DB +CD)-AD  (4.2.6)
which vanishes identically. Thus, identity (4.2.4) is proved.

(a) (b)

Fig. 4.1 (a) Directed line segments AB and BA, (b) Directed line segments AB, BC
and C'A.
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In 1765, Euler first made an attempt to generalize the famous theorem
which states that the angles at the base of an isosceles triangle are equal
and conversely. He formulated that the ratio of the angles ZA: ZB=m:n
of a triangle CAB forn =1. f m=n=1, ZA = /B, then a = b, so the
triangle CAB is an isosceles triangle. He proved that if /B : ZA=2:1,
then b2 — a? = ac, and conversely.

If /B = 3/A, then he proved that a(b? — a? + ¢?)? = b%c%(a + b) and
conversely. He continued to prove results up to m = 13.

In 1678, an Italian mathematician, Giovanni Ceva (1647-1736) pub-
lished a treatise on Geometry which included many basic properties of
triangles. We state here a couple of Ceva’s theorem without proofs as they
are elementary exercises. In Figure 4.2, the points L, M, N are called feet
of the Cevians AL, BM and CN respectively, the point P is called the
Ceva point and the triangle LM N is called the pedal triangle of the Ceva
point P.

Ceva’s Theorem 4.2.2. If three Cevians AL, BM and C'N are drawn
from the vertices of a triangle ABC so that they meet at P, they divide
the opposite sides into six line segments such that the product of the three
segments with no common ends is equal to the product of the other three
line segments. More precisely, as shown in Figure 4.2

AN BL CM
ﬁ'L_C'm—l. (4.2.7)

The converse of this theorem is also true.

D

Fig. 4.2 A triangle ABC, and the pedal triangle LM N.
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Ceva’s Theorem 4.2.3. If LM N is a pedal triangle of the Ceva point
P for the triangle ABC, then
PL PM PN
AL "BM T ON T
The proof of this theorem follows from similar triangles BPC and BAC.
It seems that Euler was also inspired by Ceva’s treatise on Geometry
and proved several interesting theorems.
Euler’s Theorem 4.2.4. In any triangle ABC, AD, BE, and C'F are
three Cevians meeting at the Ceva point O, then
oD OFE OF
Ap "BE T CF T
The proof of this theorem follows from similar triangles BPC and BAC.
Proof. In Figure 4.3, we draw two line segments OP and OQ parallel
to AB and AC respectively so that

BP + PQ+QC = BC.

1. (4.2.8)

1. (4.2.9)

Or,
BP P C
==t il + Qe =1. (4.2.10)
Obviously, there are three pairs of similar triangles. Since triangles BEC
and BOQ are similar, so,
QC OF

B—C —_— ﬁ. (4.2.11)

C

Fig. 4.3 ABC is a triangle with the three Cevians AD, BE and CF.
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Similar, it follows from similar triangles CF B and COP that

BP OF
and from similar triangles POQ and ABC that
PQ OD

Substituting, (4.2.11)—(4.2.13) into (4.2.10) yields (4.2.9). The proof is
complete.

We next introduce three real numbers «, 3, v so that AO = « - OD,
BO =(-0OF and CO =~ - OF so that

AD CF
1= AD 1= BE 1= == 42.14
atl=op Ot OE T T OF (4.2.14)
Consequently, (4.2.9) reduces to the form
1 1 1
n n - 42.15
a+l  B+1 y+1 ( )
This is equivalent to
o p v
n " ) 4.2.16
a+l pB+1 ~v+1 ( )
which is, after simple calculation, equivalent to
afy = (a+p+7)+2. (4.2.17)

Or, equivalently,

EB—O@ AO+BO+@+2 (4.2.18)
OD OFE OF OD OE OF o
This is true for any triangle ABC, as shown in Figure 4.3.
Theorem 4.2.5. FEuler Law of Quadrilateral. If ABCD is a quadri-
lateral with diagonals AC and BD, and if a parallalogram ABCFE is con-
structed with two sides BC, AE, AB and CFE, and if points D and E are

joined to form the lines DE, then
AB? + BC? + CD? + AD? = AC* + BD? + DE*. (4.2.19)

Proof. Since ABCEF is a parallalogram with AE = BC and diagonals
AC and BE, we consider a point F' as shown in Figure 4.4 so that CF is
parallel to AD and BF is parallel to DE. Clearly, two triangles BC'F and
ADE are congruent to each other.

We then draw lines AF, DF and EF and consider the two paral-
lalograms ADCF and BDEF with diagonals AC, DF and BE, DF
respectively.  Since angles ZADC and ZDCF are supplementary, so
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D

F

Fig. 4.4 A Quadrilateral ABCD.

cos(£DCF) = cos(m — LADC) = —cos(£LADC). We apply the cosine
law to the two triangles ADC and DCF to obtain
AC? = AD* + DC? —2AD - DC cos (/ADC), (4.2.20)
DF? = DC? + CF? +2DC - CF cos (LADC) . (4.2.21)

Adding (4.2.20) and (4.2.21) gives
AC? + DF? =2 (AD? + DC?). (4.2.22)
Similarly, for the parallalogram BDFEF,
BE? + DF? =2 (BD? + DE?). (4.2.23)
Equating the value of DF? from (4.2.22) and (4.2.23) gives
2 (AD* + DC?) =2 (BD” + DE*) + AC® — BE”. (4.2.24)
Similarly, it follows from the parallalogram ABCE, that
2 (AB* + BC?) = AC® + BE”. (4.2.25)
Adding (4.2.24) and (4.2.25) yields the Euler law of quadrilateral as
(AB? + BC? + CD? + AD?) = (AC* + BD? + DE?).. (4.2.26)

The following corollaries are in order:
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A D

Fig. 4.5 A Parallalogram ABCD.

Corollary 4.2.1. For the quadrilateral ABCD,
AB? + BC? + CD?* + AD? > AC? + BD?, (4.2.27)

where equality holds when the quadrilateral ABCD is a parallalogram as
shown in Figure 4.5 so that DE = 0 so that

AB? + BC? + CD* + AD* = AC? + BD*. (4.2.28)

That is, the sum of the squares of the sides of the parallalogram ABCD is
equal to the sum of the squares of the diagonals.

Corollary 4.2.2. In Figure 4.4, if the line PQ is joined by the mid-
points P and @ of the diagonals AC and BD respectively, then

1
PQ = 3DE. (4.2.29)
In a quadrilateral ABCD, if P and @ are the midpoints of the diagonals
AC and BD respectively, then

AB? 4+ BC? + OD? + AD* = AC? + BD? + 4PQ*. (4.2.30)

This readily follows from (4.2.26).

Finally, another corollary which is the famous Fuler—Pythagoras theorem
follows from the Euler law (4.2.30) of quadrilateral:

Corollary 4.2.3. (The Euler-Pythagoras Theorem). If ABCD is a
rectangle in Figure 4.6 (b), then P = Q, PQ =0, AC = BD, CD = AB
and AD = BC. The identity (4.2.30) reduces to

AB? + BC? = AC?, (4.2.31)

This is the famous Euler—Pythagoras theorem for the right angled triangle
ABC.
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D

(a) (b)

Fig. 4.6 (a) A Quadrilateral ABCD, (b) A Rectangle ABCD.

In about 150 A.D., the famous Greek astronomer, Claudius Ptolemy
proved the following celebrated theorem for a cyclic quadrilateral.

Ptolemy’s Theorem 4.2.6. In a cyclic quadrilateral, the product of
the two diagonals is equal to the sum of the products of the two pairs of
opposite sides, and conversely.

Proof. In Figure 4.7, ABCD is a cyclic quadrilateral with sides AB =
a, BC =b,CD =¢, DA = d and diagonals AC =z and BD = y.

We draw an angle ZCDE = ZADB so that the two triangles ADB
and CDFE become similar as they have equal angles ZABD and ZDCE.
Consequently,

e _Y
CE ¢
Or,
CE -y =ac. (4.2.32)
Similarly, it follows from the similar triangles BDC and ADE that
by
EA d
Or,
EA-y=bd. (4.2.33)

Adding (4.2.32) and (4.2.33) gives
y(CE 4+ EA) = (ac+ bd).
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Since CE + EA = AC = z, hence,
xy = ac + bd. (4.2.34)

This is the assertion of Theorem 4.2.6. Conversely, if (4.2.34) holds for a
quadrilateral ABC'D, then ABCD is cyclic.

In particular, if a cyclic quadrilateral ABCD is a cyclic rectangle
ABCD, then a = ¢, b= d and « = y so that Ptolemy’s theorem reduces to
the Euler—Pythagoras theorem

2% = a® + b (4.2.35)

Stewart’s Theorem 4.2.7. If a, b, c are three sides of a triangle and if
L is any point drawn from the vertex A on the side BC' as shown in Figure
4.2, so that BL = p and LC = g, then the length x, = AL is given by the
quadratic equation

az? = pb® + qc® — apq. (4.2.36)

Proof. Using the law of cosines to the triangles ABL and ALC, as
shown in Figure 4.2, we obtain

=2 +p* — 2x,pcos ALB, (4.2.37)
b? = 22 + ¢* + 2w,q cos ALB. (4.2.38)

Multiplying (4.2.37) by ¢ and (4.2.38) by p and adding these results with
the fact that p 4+ ¢ = a yields the desired result (4.2.36).

D

Fig. 4.7 A cyclic quadrilateral ABCD.
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Remark. This theorem can be used to determine the lengths of three
cevians AL, BM and CN. In particular, the lengths of the medians and
the bisectors of the angles of a triangle can be found by means of Stewart’s
theorem which was proved by Matthew Stewart (1717-1785) in 1746, who
succeeded Colin Maclaurin as professor of mathematics at the University
of Edinburgh. If p = ¢ = §, then (4.2.36) gives the length x, of the median
AL as

1 1
xgzzﬁ(w<+c%-—za? (4.2.39)

Using the cyclic permulation of letters leads to corresponding formulas of

the two other medians

1 1
Z=—(a®+b) - = 4.2.4
2= (@) - e (4.2.40)
Adding results (4.2.39) and (4.2.40) gives

1 1
B 5(02 +a?) — sz, x

3
2+l +ad= Z(a2 +b% 4 ). (4.2.41)

This means that the sum of the squares of the three medians of a triangle
is equal to three-fourths the sum of the squares of sides.

On the other hand, if the cevian AL is the bisector of the angle A, we
then find that g = ¢ so that £ = ;& and 1 = ﬁ. Substituting the
values p and ¢ in (4.2.36) yields

2 a’
=bc|l— —|. 4.2.42

. C{ (b+c)2] 2a2)
Similar expressions for z7 and z2 can be obtained by cyclic permulation of
letters.

Finally, there is a remarkable formula discovered by Heron of Alexandria
(10-70 A.D.) in about 60 A.D. If A denotes the area of a triangle ABC' in
terms of its side lengths;

A =+/s(s—a)(s—b)(s—c), (4.2.43)
where 2s = a + b + ¢ is the perimeter of the triangle ABC.

Making reference of Figure 4.2, the area of the triangle ABC is given
by

A = %BC -AD = %ah = %absinC. (4.2.44)

Similarly, two more formulas for the area of ABC are obtained by cyclic
permutation of the quantities in (4.2.44):

1 1
A= §bcsinA = 5ca sin B. (4.2.45)
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It then follows from (4.2.44) that

4?2
.2
sin®C = poToR (4.2.46)
and from the law of cosines that
2 =a?+b? — 2abcosC,
so that
2 4 p2 _ 2)2
2 (a® +b% —c)
cos* C = W (4247)
Adding (4.2.46) and (4.2.47) gives
ANT (a4 1 - ?)?
) 2 _
sin“ C' + cos” C = 202 + 1212 =1
Or,
16A2 + (a® + b% — ¢*)? = 4a%b%. (4.2.48)
Or,
16A2 = 4a%b? — (a® + b — ¢*)?
= {2ab+ (a® +b* — )} {2ab — (a* + b* — )}
={(a+b)? -} {*—(a—1)*}.
Therefore,
1
A:Z\/(a—l—b—i—c)(a—i—b—c)(b+c—a)(c+a—b). (4.2.49)

Using 2s = a+b+c,a+b—c=2s—c¢),b+c—a = 2(s—a) and
c+a—b=2(s—b), the area A reduces to the form

A =+/s(s—a)(s—b)(s—c). (4.2.50)

This is the celebrated Heron’s formula for the area of a triangle ABC.

Remark. Heron’s formula seems strange in the sense that there is a
square root of the product of four quantities. In almost all formulas for an
area, the area is usually expressed by a product of two quantities.



112 The Legacy of Leonhard Euler — A Tricentennial Tribute

4.3 Incircle, Incenter and Heron’s Formula for an Area of
a Triangle

The incenter is the center of the inscribed circle (or incircle) that touches
three sides BC, C'A and AB of the triangle ABC at P, (Q and R as in
Figure 4.8. We denote the incenter by I and inradius by r.

Clearly, all three bisectors of the three angles of a triangle ABC meet
at the incenter I of the inscribed circle so that the radius I P of the incircle
is perpendicular to the sides of the triangle ABC.

It follows from Figure 4.8 that

AABC = ABIC + ACIA+ AAIB
:%ar—i—%br—k%cr:%(a—kb—i—c)-r:rs. (4.3.1)

We denote BP = x, PC = y so that z + y = a. Similarly, CQ = y and
QA =zsothat y+z=>band AR = z and RB = z, then z + x = ¢. Thus,
2s=(a+b+c)=2(x+y+z). Evidently, s—a=c+y+z—(x+y) =z,
s—b=zand s—c=vy. And AABC = r(x +y + z). The use of the
arithematic-geometric mean inequalities x +y > 2,/xy, y + 2 > 2,/yz and
z 4+ x > 2y/zx gives the Lehmus or Padoa inequality:

(@ +y)(y + 2)(z + z) = 8zyz = (22)(2y)(22).
Or,
abc> (a+b—c)(b+c—a)(c+a—0).
Also,

1 1
a:x+y:BP+PC:r<c0t§B+cot§C), (4.3.2)

Fig. 4.8 Incenter and Incircle.
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whence
o1 1 1
r = asin §B sin 50 sec §A. (4.3.3)
It follows from Figure 4.8 that the altitude AD = h, is given by

B B
he = AD = ¢sin B = 2¢ sin;cos—

2
— 2. \/ﬂ: - \/T;i - 2((7211);;” . (434)
Thus, the area of the triangle ABC' is
AABC = %a he = %(x +y)- 2{;1?;; = m(x; ?g +2) (435
In view of (4.3.1) and (4.3.5), it follows that
s(r* +2%) = z(z +y)(z + 2) = z(sx + y2).
Or,
sr? = ryz. (4.3.6)

Thus, the area of the triangle ABC' is
A =rs=Vs-sr2 = [s0yz = \/s(s —a)(s —b)(s —c). (4.3.7)

This is again Heron’s formula for the area of a triangle.
It can be shown that the length ¢4 of the bisector, Al of the angle A in
Figure 4.8 is

2_ 2
la= <b2—l|)—cc) cosé = Vbe{(® +bf:) a y} (4.3.8)
It seems that one of the great Hindu mathematicians, Brahmagupta in the
seventh century knew the Ptolemy’s Theorem 4.2.6 on the cyclic quadrilat-
eral, and discovered a remarkable theorem:

Brahmagupta’s Theorem 4.3.1. The area [J of a cyclic quadrilateral
of ABCD of sides a, b, ¢ and d is given by

O=+(s—a)(s —b)(s—c)(s —d), (4.3.9)
where 2s = (a + b + ¢ + d) is the perimeter of the quadrilateral ABCD.
Obviously, Heron’s formula (4.3.7) for the area of a triangle is a special case
of (4.3.9).

It is interesting to point out that the square of the area [J of any arbi-
trary quadrilateral ABC'D (see Figure 4.7) is given by the following formula

A+C
2

0% = (s —a)(s — b)(s — ¢)(s — d) — abed cos? ( , (4.3.10)
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when A and C are the opposite vertex angle of the quadrilateral ABCD.
It follows from Figure 4.7 that
y? =a? +d® —2adcos A = b% + ¢* — 2bccos C,

and so

(adcos A — bccosC) = %(a2 +d* —b* = ?). (4.3.11)
The area O of the quadrilateral ABCD is

(adsin A + besin C') = 200, (4.3.12)

Squaring and adding the corresponding sides of (4.3.11) and (4.3.12) yields
a’d® + b*c? — 2abed cos(A + O) = 407 + %(a2 +d% —b? — )2,
Consequently,
16 0% = 4(ad + be)? — (a® + d* — b? — ¢*)? — 16abed cos® {%(A + C)} .
=[(a+d)?—(b+¢)?] [(b+¢)? - (a—d)?]
—16abed cos® {%(A + C’)} . (4.3.13)
Therefore,
0% = (s —a)(s — b)(s — ¢)(s — d) — abed cos® {%(A + C)} . (4.3.14)

This is the desired result (4.3.10).

In the case of a cyclic quadrilateral ABC'D, A+C = 7 and then formula
(4.3.10) reduces to the celebrated Brahmagupta formula (4.3.9).

If x and y are the diagonals of a quadrilateral, then there is another
formula known as Bretschneider’s formula for the area given by

(40)% = (22y)? — (a® + ¢ — b* — d?)%. (4.3.15)

This expresses the square of the area in terms of the sides and diagonals.
The reader is referred to Problem E1376 in the American Mathematical
Monthly, 67 (1960) p. 291.

If a circle is inscribed in the quadrilateral, then a + ¢ = b+ d and hence,
the formula (4.3.15) reduces to

407 = 2%y? — (ac — bd)*. (4.3.16)
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A

A d
B D C
Fig. 4.9 Medians and the Centroid.

4.4 Centroid, Orthocenter and Circumcenter

The median is a straight line joining the vertex of a triangle ABC' to the
midpoint of the opposite side as shown in Figure 4.9.

The centroid, G is the point of intersection of three medians of the
triangle ABC' so that the centroid intersects each median in a ratio 2:1,
that is, AG = 2GD.

The orthocenter, H is the point of intersection of three altitudes of a
triangle, as shown in Figure 4.10.

Using Figure 4.10, the area of the triangle ABC' is given by

1 1
A:ia-ADziac sin B. (4.4.1)
Similarly,
1. 1, .
A= 3 absinC = 3 bc sin A. (4.4.2)

Using the cosine formula for a triangle ABC, we have

a? =b%+ % — 2bccos A
4h%c? — (b2 +c2— a2)

4b2c?
_(a+b+c)b+c—a)(c+a—b)la+b—c)
B (2bc)?
_ 25(25 —2a)(2s — 2b)(25 — 2c)

(2bc)?

2y/s(s —a)(s —b)(s — ¢)
be '

sinA=1—cos’? A=

sin A =



116 The Legacy of Leonhard Euler — A Tricentennial Tribute

A

B D C

Fig. 4.10 Orthocenter of a triangle.

Thus, the area of the triangle ABC' is

A= %bcsinA =/s(s —a)(s —b)(s — c).

This is the celebrated Heron’s formula (4.3.7).

Using
1 1 1
r = asin §B sin 50 sec EA’
and
A B C
r=4R sinE sin; sina.

The circumcenter, O is the center of the circumscribed circle, (or cir-

cumcircle) of a triangle. It is the intersection of the perpendicular bisectors

of the three sides of a triangle, as shown in Figure 4.11.

Since the angle at the center circumcenter, /BOC = 2A, the two
right angled triangles AOBP and AOCP are congruent with ZBOP =

ZCOP = A. Consequently,

1
Rsin A = g or R = —cosecA
a

or
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Fig. 4.11 (a) The circumcenter O and the circumcircle, (b) The circumcenter and the
diameter of the circumcircle.

Similarly, we obtain

a b c
2R = = = . 4.4.
R sinA sinB sinC (4.4.3)
Also,
OA’ = Rcos A. (4.4.4)

We draw a perpendicular from the vertex to the opposite BC' of the
triangle ABC, as shown in Figure 4.11 (b). Since two right-angled triangles
ABD and APC' are similar,

AD _ 4c
AB AP’
Or,
AC be
AD = 25 AB = 7. (4.4.5)
Thus,
1 1 (abc
Or,
4RNABC = abc > 8xyz, by the Lehmus inequality. (4.4.6)

We next draw the incircle with incenter I and inradius r, and three
excircles with excenters I, Ip, I. and exradius 7, 1, 7. associated with a
triangle ABC, as shown in Figure 4.12. Then it follows that

AABC = AABI, + AACI, — ABCI,,

==bore+ .
= 5 Ta 2C Ta 2(1 Ta,

= %(b +c—a)ry = (s —a)r,. (4.4.7)
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Fig. 4.12 The incircle with incenter I and excircles with excenters I, I}, and I..

Similarly,

AABC = (s —b)ry, and AABC = (r —c)re.

Combining (4.3.1) with (4.4.7)—(4.4.8), it turns out that

A=rs=(s—a)ra=(s—b)ry, = (s — ¢)re.

Using (4.3.1) and formula (4.3.6) gives
AN? 1
. (—) L) b)s -,

S

7"2:( A )Ls(s—b)(s—cx

s—a

Similarly,

2 2
ri:(s%b> and Tz:(sfc) .

A simple algebra leads to the result

A% = (rrgryre).

(4.4.8)

(4.4.9)

(4.4.10)

(4.4.11)

(4.4.12)

(4.4.13)
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Also
B C
a=BC=BP+PC=r, tan5+tan5 . (4.4.14)
Or, equivalently,
B A
W = 4.COS = COS — sec =, 4.4.1
Ta = GCOS 7 COS o SeC 5 ( 5)
which is, by (4.4.3)
A B C
rq = 4R sin 5 €08 5 cos . (4.4.16)
Similarly,
. B A c . C B
rp = 4R sin bl cos 0} cos 2 r. = 4R sin 2 cos 0} cos 5 (4.4.17)
It follows from (4.4.6) that

4R = abe
=s(s—=b)(s—c)+s(s—c)(s—a)+s(s—a)(s—b)

—(s—a)(s=Db)(s—¢)
A? A2 A2 A?

= - 4.4.1
s—a+s—b+s—c s ( 8)
which is, by (4.4.8)-(4.4.9),
ARNA = N(rg + 1y + 10— 7). (4.4.19)

Canceling the common factor A, we obtain the formula connecting the
circumradius, inradius and three exradii

AR = (rq +1p+17¢) — 1. (4.4.20)
On the other hand, the sum of the reciprocals of the exradii is equal to

the reciprocal of the inradius, that is,

11 1 1 s 1
b ) S @Bs—a—boc)= 2 =2, 4.4.21
<7~a +o Tc) ~(3s—a =% =1 ( )

We denote hg, hy and h. are the altitudes from the vertices A, B, C on
the opposite sides BC', C'A, AB respectively. Hence,

ahg = 2\ = 21y(s — b) = rp(a +c —b),
ahg =2/ =2r.(s —¢c) =r.(a+b—c).
Or,
a(ry —ha) = 10(b—¢), alha —7rc) = re(b—0),
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which gives, after dividing the first result by the second, and solving for h,

2rp7e
he = —2c (4.4.22)
(ro +7¢)
Similarly, we obtain two similar results for h; and h.:
2 a'c 2 a
hy = —rale g Ll (4.4.23)
(ra +7¢) (ra +1p)

Thus, we have
ahg=bhy=ch.=2A=2rs=r(a+b+c),

and then

1 1 1 a+b+ec s 1
4,y _zZr7rE_ 2 = 4.4.24
e T YN N (4.4.24)

This means that the sum of the reciprocals of the altitudes of a triangle is
equal to the reciprocal of the inradius.

Thus, it follows from (4.4.21) and (4.4.24) that the sum of the reciprocals
of the altitudes of a triangle is equal to the sum of the reciprocals of the
exradii of excircles:

— = — = —. (4.4.25)
Finally, the value of the altitudes can be obtained as functions of exradii
as follows:
ahg =20 =2r,=r(a+c+0b),
ahg =20 =2r,(s—a)=r.(b+c—a).
Consequently,
alhg — 1) =71+ ¢), alhg +14) =ro(b+c).

Dividing the first result by the second and hence, solving for h, gives

2rrg
he = —1a_ (4.4.26)
Tg —T
Similarly, we can derive similar results
2 2rre
hy = —1b = e (4.4.27)
Ty — T Te—T

These results (4.4.26)—(4.4.27) show that the altitude to one side of a
triangle is equal to the ratio of the twice the product of the inradius and
the opposite exradius to the difference of these radii.

We close this section by adding a problem of inscribing or circumscribing
a regular polygon of n sides in or about a circle. We take O as the center
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A

Fig. 4.13 The circumcircle and the incircle with a regular polygon of side AB.

of the circumcircle of radius R and incircle of radius r and a as the length
of a side of the polygon, as shown in Figure 4.13.

We take AB = a as a side of the polygon and P its point of contact
with the incircle so that the angle ZAOB = 27” and ZAOD = 7. Thus,

a=2R sin ~ = 2rtan —. (4.4.28)
n n
The area of the triangle OAB is
1 2 1
AOAB = —R%sin =~ = ~ar = 12 tan —. (4.4.29)
2 n 2 n
Thus, the area of the polygon is
1 2
“nR2sin — = nr? tan —. (4.4.30)
2 n n

4.5 The Euler Line and the Euler Nine-Point Circle

Two plane are called homothetic if they are similar and similarly placed,
that is, they are related by a dilation (or homothetic transformation) which
can be defined as follows.
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Fig. 4.14 The Euler Line HGO.

Definition. If O is a fixed point and k is a given nonzero real number,
then the transformation T'(O, k) is called a dilation (or homothetic trans-
formation) which transforms a point P on OP into a point P’ such that
OP’' = k OP, where k is positive or negative provided P and P’ are on the
same side of O or on opposite sides of O.

The orthocenter H, centroid G and the circumcenter O of a triangle
ABC lie on the same line and HG = 2GO. The line HGO is called the
Euler line, as shown in Figure 4.14. Euler discovered this line in 1765.

According to the definition of the centroid, P, @, R, are midpoints of
the sides BC, CA and AB respectively of a triangle ABC, as shown in
Figure 4.14. Since the ratios

GA_GB_GC _»
GP GQ GR 1’
The triangles ABC and PQR are homothetic under the homothetic trans-
formation T(G,—2). Therefore, the orthocenter O of the triangle PQR

maps into the orthocenter H of the triangle ABC. Thus, it follows that H,
G, O are collinear and HG = 2GO.

(4.5.1)
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Fig. 4.15 The Euler nine-point circle.

The Euler Nine-Point Circle Theorem 4.5.1. The midpoints of the
three sides of a triangle, the midpoints of the lines joining the orthocenter
to the three vertices, and the feet of the three altitudes lie on a circle with
the center at the midpoint of the line joining the circumcenter and the
orthocenter and radius is half of the circumradius.

This nine-point circle is called the Euler circle. It was Poncelet who
named this circle the nine-point circle, and this is the name commonly used
in the English-speaking countries. However, the European mathematicians
referred it as Feuerback’s circle.

Proof. Making references to Figure 4.15, P, @, R are the midpoints
of the sides ABC, and L, M, N are the midpoints of HC, AH and BH
respectively. Since NL and L@ are parallel to QR and RN respectively
and AH is normal to the side BC, it follows that NLQR is a rectangle.
Similarly, RQPB is a rectangle. Thus, PM, QN, RL are three diameters
of a circle. Since these diameters subtends right angles at the midpoints D,
E, F respectively, so the nine points D, E, F, P, Q, R, L, M N all lie on
the same circle.

Clearly, both triangles PQR and M NL are homothetic to the tri-
angle ABC' under respective homothetic transformations T’ (G, —%) and
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Fig. 4.16 The circumcircle and the incircle.

T (H , —|—%) Since the ratios of homothetic transformations are :I:%, the ra-
dius of the nine-point circle is half of the circumradius and H, G divides
the segment OS externally and internally in the ratio 2 : 1, where S is the
center of the nine-point circle.

Euler’s Theorem 4.5.2. The square of the distance, d between the
circumcenter, O, and the incenter, I of a triangle ABC' is equal to the
square of the circum radius, R minus the twice of the product of R and the
inradius 7, that is,

d*> = R* — 2Rr. (4.5.2)
This is called the Euler distance formula. Obviously, R > 2r. This is called
the Euler triangle inequality which was published by Euler in 1767.

Proof. We draw a circumcenter and an incenter of a triangle ABC,
as shown in Figure 4.16. The point O is the circumcenter and [ is the
incenter, and OI = d, OP = OQ = R, is the circumradius and IM = r is
the inradius.

Since ZIAM = ZBPQ@, the two right-angled triangles AMI and PBQ
are similar, and therefore,

IM Al
BQ  PQ
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Or,
2Rr = Al - BQ.
Since BQ = IQ and so
2Rr = Al - I1Q.

The chord AQ of the circumscribed circle intersects the diameter through
O and I, and hence,

AIl-IQ=LI-IN = (R+d)-(R—d). (4.5.3)

Or
2Rr = R? — d°. (4.5.4)
This is the desired result.
Or, equivalently,
l_o1 1

r R+d R-d
This formula connects the radii » and R of the incircle and the circumecircle
of a triangle and the distance d between their centers.

An argument similar to the above leads to the formulas for the distances
between the circumcenter, O and excenters I, I, and I, as

d?> =r*+2Rr,, di = R?>+2Rr,, d*>=R?+2Rr.. (4.5.6)

(4.5.5)

Several distance formulas between special points can easily be obtained.
We consider distances between the circumcenter O, the orthocenter H, the
incenter I, the one of the excenters I, the center S of the Euler nine-point
circle of radius R/2, and the centroid G, as shown in Figure 4.17. According
to the Euler theorem 4.5.1, the points H, G, O lie on the Euler line, and
HG = 2GO and S is the center of the Euler circle so that it is the midpoint
of HO. Also, ZIAP = /IAH, OA =R and AH = 2Rcos A,

Al = Rcosecé = 4Rsin E cos g, and AI, = 4R cos E cos g
2 2 2 2 2

The following results similar to those of d = OI, d, = Ol,, d, = Ol

and d. = OI, given by (4.5.2) and (4.5.6) can be proved:

d? = OH? = R*(1 — 8cos A cos Bcos C), (4.5.7)
ds = TH* = 2r* — 4R? cos A cos B cos C,

2 2
d2=18%= <%R—r> and d? =1,5%= (%Rwa) . (4.5.9)
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Ia

Fig. 4.17 Several special centers.

Results in (4.5.9) follow from Figure 4.16 and the results (4.5.7) and (4.5.8)
as
1 1

1
1S?=-IH?+ =0I? - ~OH?
2 *3 40 ’

:7’2+£(R2—2RT)—1R2: Ty :
2 4 2 '

Similar1y7
a = + Ta-

The last two distance formulas also clearly indicate that the incircle and
the three excircles touch the FEuler nine-point circle.

4.6 Euler’s Work on Analytic Geometry

In the second volume of his Introductio, Euler made an indepth study of
both algebraic and transcendental algebraic curves and proved a number of
general theorems about the algebraic curves. He first introduced the general
second degree equation in two dimensions with constant coefficients in the
form

az® 4 2hxy + by + 2fx + 29y +e =0, (4.6.1)
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v
Fig. 4.18 The Euler angles ¢, ¢ and 6.

and showed that it represents various conic sections. The general equation
(4.6.1) represents an ellipse, parabola or hyperbola if ab — h? > 0, = 0
or < 0 respectively, and a circle if @ = b and h = 0. He also discussed
the classification of cubic and quartic algebraic curves, and introduced the
parametric equations of both plane curves and surfaces, where x and y are
expressed in terms of third variable ¢, and z, y, z are expressed in terms
of two other variables u and v. For example, the parametric equations of
the circle 22 + y? = a? are x = acost and y = asint, and = = at?, y = 2at
are the parametric equations of the parabolic 42 = 4az. Similarly, the
parametric equations of the ellipse b?z? + y2a? = a?b? are x = acost and
y = bsint. For hyperbola 2%/a? — y?/b? = 1, the parametric equations are
x = acosht and y = bsinht.

Euler also investigated three dimensional coordinate geometry by intro-
ducing the general second degree equation in three variables with constant
coefficients in the form

ax® + by +c2® +dry fexz + fyz +gr+hy+kz+m=0. (4.6.2)

Euler first introduced the transformation from the Ozyz-system to the
02'y’z’ system whose equations are represented (see Figure 4.18) in terms
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of the Fuler angles ¢, 1 and 6. These angles are considered as the angles
through which the former must be successively rotated about the axes of
the latter so that in the end the two systems coincide. The angle ¢ is
measured in the zy-plane from the z-axis to the line of nodes £ which is the
line of intersection of the planes Ozy and 0z'y’. The Cartesian coordinates
z, 1y, z and 2’, 3/, 2’ are related by the relations

x = 2’ (cos ) cos ¢ — cos O sin 1 sin ¢)
—y' (cost)sin ¢ + cosfsintsing) + 2’ sinfsing,  (4.6.3)

y = 2’ (sint) cos ¢ + cos 6 cos 1) sin ¢)
—y/ (sint)sin¢ — cosfcosysing) — 2’ sinfsing,  (4.6.4)
z = 2’ sinfsin ¢ + 4’ sinf cos ¢ + 2’ cos b. (4.6.5)
Euler used this transformation to transform (4.6.2) to cannonical forms
and obtained seven different cases: cone, cylinder, ellipsoid, hyperboloid
of one and two sheets, parabolic cylinder and hyperbolic paraboloid - the
last of these was his own discovery. He also discovered that the degree of a

curve is invariant under a linear transformation.

Isaac Newton proved that the general third degree algebraic equation
representing cubic curves in the form

ax® + bady + cay® + dy® +ex® + fay + gyt +he +jy+ k=0, (4.6.6)

can be transformed by a change of axis, into one of the following four
forms such as (i) xy? + ey = f(x), (i) 2y = f(x), (iii) y?> = f(x), and
(iv) y = f(z), where f(z) = az® + bx? + cx + d. Newton’s work on third
degree plane curves stimulated much other work on higher degree plane
curves. The classification of third and fourth degree curves also continued
to interest mathematicians and physicists of the eighteenth and nineteenth
centuries. It became evident from the study of cubic curves and the curves
of higher-degree that equations of these curves exhibit many special features
such as singular points, inflection points, and multiple points. In general,
f(x,y) = 0 represents a general conic section, where f is a polynomial in x
and y. In particular, if f(x,y) has no first degree terms and contains only
second degree terms such as f(x,y) = az? + 2hay + by?, then f(z,y) =0
represents several conic sections depending on nature of a, h and b including
two different straight lines.

In his letter of 1643, Fermat provided a brief sketch of his major ideas
on analytic geometry of three dimensions and then introduced the plane
curves in general and curves on surfaces including cylindrical surfaces, el-
liptic paraboloid, hyperboloid of two sheets and ellipsoids.
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Fig. 4.19 (a) Folium of Descartes, (b) The Bernoulli lemniscate.

For example, the plane curve
flz,y) = 2® +y* = 3azy =0, (4.6.7)

represents Cartesian leaf or folium of Descartes (see Figure 4.19 (a)). It
has tangent at the origin which is its only singularity. The asymptote is a
straight line x +y +a = 0.

The plane curve

fla,y) = (@® + 3% — 2%z —y?) =0, a>0, (4.6.8)

represents the Bernoulli lemniscate (see Figure 4.19 (b)). Its second degree
term 22 — y%2 = 0 or y = 4 represent the tangents at the origin. In polar
coordinates r, 6, the equation of the Bernoulli lemniscate is r? = a2 cos 2.

The plane curve
flz,y) = ay? — 23 =0, (4.6.9)

represents the semicubical parabola with a cusp at the origin as shown in
Figure 4.20 (a) and y? = 0 is the equation of the two coincident tangents
to the curve.

The equation

fla,y) = (2% —y* —ax)” — a® («® +4°) = 0, (4.6.10)

represents the Cardioid as shown in Figure 4.20 (b). Its equation in polar
coordinates is r = a(1 + cos#), a > 0.
The equation

flz,y) =a(y® —32%y) —a* =0, (4.6.11)
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Fig. 4.20 (a) The semicubical parabola, (b) The Cardioid.

represents a plane curve as shown in Figure 4.21 (a) with a triple point at
the origin and with the three tangents with equations a (y3 — 3x2y) =0or
y=0and y = +v/3z.

The equation

f(z,y) = (z+a)z® + (z — a)*y*> = 0, (4.6.12)

represents the Strophoid as shown in Figure 4.21 (b) with asymptote = a.
The equation

fzy) =a(y* —2%y?) —2® =0, (4.6.13)

represents a plane curve as shown in Figure 4.22 (a) with a quadruple point
at (0,0) which is a combination of a cusp and a node. It has four tangents
with equations y =0, 0, y = £x.

ﬁy

N

L4

Fig. 4.21 (a) A plane curve with a triple point at (0,0), (b) The Strophoid.
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Fig. 4.22 (a) A plane curve with a quadruple point at (0,0), (b) A plane curve with a
cusp at the origin.

The equation
flxy) = (y—a®)? —a2® =0, (4.6.14)

represents a plane curve as shown in Figure 4.22 (b) with a cusp at the
origin. Both branches of the curve lie on the same side of the double
tangent (y = 0).

In 1739, Euler gave many examples of such curves with a cusp which
is also called a stationary point because a point moving along the curve
should come to stop before continuing its motion at a cusp.

i\y ) y

N 0 X 0 a X
WV v
(a) (b)

Fig. 4.23 (a) A plane curve with imaginary tangents, (b) The Cissoid of Diocles.
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The equation
fla,y)=y* —2*(2x— 1) =0, (4.6.15)

represents a curve as shown in Figure 4.23 (a) which has a double imaginary
tangent with equation y2 = —z2. It has a conjugate point at the origin.
When the two tangents are imaginary, the double point is referred to as
conjugate point.

The equation
23+ (z—a)y? =0, (4.6.16)

with an asymptote x = a represents the Cissoid of Diocles as shown in
Figure 4.23 (b).

Finally, the geometrical locus of all centers of curvature of a given curve
C'is called the evolute E of C. For a given curve C with equation y = f(z),
the equation of its evolute in the parametric form is given by

@) [1+ 2] 1+ f2(t)
=t-—" =ft) + ——, 4.6.17
x D) y=r(t)+ 70 ( )
provided f”(t) # 0.

For example, the parametric equations of the evolute of a parabola

y = ax? are given by

1
r=—4a’*3,  y=—+3at’. (4.6.18)
2a
Eliminating ¢, we obtain the equation of the evolute of the given parabola
1 T \3/2
= — — . 4.6.1
4 2a+3a (4@2) (4.6.19)

Both the parabola and its evolute are shown in Figure 4.24 (a).
Similarly, the evolute of the ellipse

2 2

e

a b2

is the astroid as shown in Figure 4.24 (b).

—1, (4.6.20)

4.7 Euler’s Work on Differential Geometry

Differential geometry is concerned with the study of curves and surfaces
using differential calculus and analysis. Many new curves and surfaces and
their equations were introduced and their properties were studied in detail.
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Fig. 4.24 (a) Parabola and its Evolute, (b) An Evolute of an ellipse.

It was Alexis-Claude Clairaut studied the theory of space curves which
represents the first major development of three-dimensional differential ge-
ometry. In his famous book on Recherche sur les courbes a double courbure
(Research on the curves of double curvature) published in 1731, Clairaut
not only gave the equations of some surfaces, but pointed out that a space
curve is the intersection of two surfaces. Furthermore, he introduced the
fundamental idea that a space curve has two curvatures. Although some of
the quadratic surfaces including sphere, cylinder, paraboloid, ellipsoid and
hyperboloid of two sheets were known before 1700, Clairaut in his book of
1731, presented equations of some of these quadric surfaces. More precisely,
he proved that an equation that is homogeneous in x, y, and z (all terms
of the equation one of the same degree) represents a cone with vertex at
the origin of the rectangular Cartesian coordinate system. In 1732, Ja-
cob Hermann (1678-1733) discovered that the general equation of the form
22 4+ y% = f(2) represents a surface of revolution about the z-axis. He also
gave the transformation from rectangular to polar coordinates.

Although Clairaut and Hermann first developed the theory of space
curves and surfaces, Euler provided the next major step in the differential
geometry of space curves and surfaces during 1748-1760. In the second part
of his Introductio of 1748, Euler studied coordinate geometry and differen-
tial geometry of planar curves completely and spatial curves briefly. He
also expanded the use of polar coordinates and used trigonometric nota-
tions explicitly. Motivated by his fundamental ideas and use of curves and
surfaces in analytical mechanics, Euler made some major contributions to
differential geometry. He did a great deal of original work on particle dy-
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namics and then on the dynamics of rigid bodies in his first famous treatise
Mechanica which was published in 1736. In this book he used the currently
adopted polar coordinates to formulate the radial and normal components
of acceleration of a particle moving along a plane curve in the form

2 2 2
dr_r<d9> | 0 dr df (4.7 1ab)

Ay =

az ~"\a@ WErEE T w
where the polar coordinates r, € are the functions of time ¢.

Motivated by his fundamental work on the skew elastica, that is, the
form assumed by an initially straight band, when under pressure at the
ends, it is bent and twisted of a skew curve, Euler developed a complete
theory of skew curves in 1774-1775.

Although Huygens geometrically derived the formula for the radius of
curvature p(x) of a plane curve, y = f(x) in the form

1 y//
— —k()=—L (4.7.2)
p(x) (14y2)%2
FEuler gave an analytical proof of this result in 1764. Indeed, Euler repre-
sented space curves by the parametric equations x = z(s), y = y(s) and
z = z(s), where s is the curve length. From this parametric representation,
he obtained

dr =pds, dy=qds, dz=rds, (4.7.3)

where p, g, r are the direction cosines at each point with p? + ¢% + 2 = 1.
To study the properties of the space curves, Euler introduced the definition
of the radius of curvature of a curve by

ds'
= — 4.7.4
= (47.4)
where ds’ is the arc or the angle between the two neighboring tangents of
the points that are ds apart along the curve. He then derived an analytical

formula for the radius of curvature

ds? 1
_ _ . (4.7.5
O @ar + @yP T (@ )+ (2 + () o

The plane passing through the arc ds’ and the origin is called the Fuler
osculating plane at (x,y,z) whose equation is introduced by Euler in the
form

x(rdg—qdr)+y(pdr —rdp)+ z(qgdp —pdq) =t, (4.7.6)
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where t is determined by the point (z,y, 2) on the curve through which the
osculating plane passes. In modern vector notation, equation (4.7.6) can
be written as
(R—r)- (' xr")=0, (4.7.7)
where r = r(s) is the position vector of some point in space of the point
on the curve at which the osculating plane is determined, and R(s) is the
position vector of any point of the osculating plane.
Clairaut recognized that curvature and torsion of a space curve at
a point (z,y,z) are two fundamental geometrical properties of the space
curve. The former, introduced by Euler, is a measure of the rate at which
the curve is turning away from the tangent line at (z,y,z). The torsion
of the curve at (z,y,z) is also a measure of the rate at which the curve
is twisting out of the osculating plane at (z,y,z). Michel-Ange Lancret
(1774-1807), who was a student of famous French geometer, Gaspard Monge
(1746-1818), also introduced the idea of torsion in differential geometry. In
1806, Lancret formulated three principal directions at any point of a twisted
curve and they are tangent, normal and binormal, where the tangent vector
t=1r' = (2/,y,2’) can be defined in the same way as for a plane curve, the
normal to the curve that lies in the osculating plane is the principal nor-
mal, n and the perpendicular to the osculating plane, the binormal, b is the
third principal direction. These vectors t, n and b at a point (x,y, z) are
the unit vectors in the positive directions and they constitute what is called
the trihedral at the point (z,y, z). They satisfy the following relations:
t?=n’=b’=1, n-b=b-t=t-n=0, (4.7.8)
t =n x b, n=>bxt, b=txn, [tnb]=1. (4.7.9)
Thus, the torsion is the rate of change of the direction of the binormal with
respect to arc length, ds.
Subsequently, two French mathematicians, Joseph Alfred Serret (1818-
1885) in 1851 and Jean Frénet (1816-1900) in 1852 formulated a set of three
fundamental formulas, universally known as the Serret-Frénet formulas, for

the tangent vector t, the principle normal vector n and the binormal vector
b in the form

t=kn, n=7b—kt, and b’ = —7n, (4.7.10)
where a prime denotes the derivative with respect to arc length s, x is

the curvature, and 7 is the torsion of the curve. These derivatives can be
expressed in terms of Gaston Darbouz (1842-1917) vector

d =1t + kb. (4.7.11)
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It is easy to verify that
o =dxa, (4.7.12)

where & =t or n or b.
The circular heliz has the parametric equations

T =acosu, y=asinu, 2= cu. (4.7.13)
Or,
2% 4 y? = a?, Y — tan E, (4.7.14)
x c

which is the curve of intersections of two surfaces: the circular cylinder
r=a or 2?4y =a? (4.7.15)
and the helicoid

z=ch or

8] |<

= tan > (4.7.16)
&

which has the shape of a staircase.
We differentiate r = (a cosu, asinu, cu) with respect to s to obtain

t = u/(—asinu, acosu, c). (4.7.17)

Since this must be a unit vector, we find
1

The Serret-Frénet formulas give

kn=t"=u?*(—acosu, —acosu, 0) = —au'?(cosu, sinu, 0).  (4.7.19)
Thus,
2 a
= = —=. 4.7.20
K= au PR ( )
Hence,
n = —(cosu, sinu, 0), b =1t x n=4/(csinu, ccosu, a),(4.7.21)
—7n=b' =u"?c(cosu sinu, 0), (4.7.22)
so that
_ 2 __ ¢

It follows from (4.7.20) and (4.7.23) that the curvature and torsion of a
circular helix are both constant. Conversely, if a curve whose curvature
and torsion are constant, it is a circular helix including the straight line
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(k = 0 and @ = 0) and the circle (1 = 0 and ¢ = 0) as limiting cases.
In case of a twist about a certain line (screw axis) in the direction of the
Darboux vector, d = kb + 7t through a point whose position vector is
r + an, where a is the radius of the circular cylinder containing the helix.
Hence, a is obtained by eliminating ¢ from (4.7.20) and (4.7.23) as
K
a= o (4.7.24)
For a plane curve, 7 = 0 and a = % = p, the position vector r + pn and
the Darboux vector becomes kb which is normal to the plane of the curve.
When x and 7 are specified at each point of a curve, the shape of the
curve, except for its location, is uniquely determined in three dimensional
space. Conversely, a curve can be reconstructed from its curvature and
torsion except for position in space.
In his famous paper ‘Recherches sur la courbure des surfaces’ published
in 1760, Fuler established his theory of surfaces which can be regarded as a
landmark contribution to differential geometry as a new branch of geometry.
Indeed, he may be considered as a founder of differential geometry. Defining
the equation of a surface by z = f(z,y), Euler introduced new standard
notations
0z 0z 0%z 0%z 0%z
p:%, qza—y, r—axz, S:&r—ay’ t:8—y2. (4.7.25)

It is appropriate to quote here his own words:

“I begin by determining the radius of curvature of any plane section of
a surface; then I apply this solution to sections which are perpendicular to
the surface at any given point; and finally I compare the radii of curvature
of these sections with respect to their mutual inclination, which puts us in
a position to establish a proper idea of the curvature of surfaces.”

He then discovered two principal normal sections of a surface and the
principal curvatures k1 and k9. One of his results, the so called Fuler’s
equation, gives the curvature x of any other normal section making an
angle o with one of the sections with the principal curvature in the form

K = K1 cos® a + ko sin® a. (4.7.26)

It was Euler who first considered the subject of developable surfaces (for
example, a cylinder or a cone), that is, surfaces that can be deformed into
a plane without distortion such as stretching or tearing. A surface is called
a ruled surface (for example, a cylinder, cone, hyperboloid or hyperbolic
paraboloid), if it can be generated by the motion of a straight line in space.
In 1775, Monge used an intuitive geometrical argument to demonstrate that
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a developable surface is a ruled surface on which two consecutive lines are
parallel or concurrent and that any developable surface is equivalent to that
formed by the tangents to a three dimensional space curve. However, the
converse is not necessarily true, that is, a ruled surface is not a developable
surface. Monge also gave a general representation of developable surfaces
with their equations in the form

z=z[F(q) — q¢F' ()] + f(q) — af'(q), (4.7.27)
9z

where ¢ = 20 and such surfaces except for cylinders normal to x — y plane,
always satisfy the partial differential equation

ZawZyy — Zay = 0. (4.7.28)

x

Monge then investigated the general form of ruled surfaces and gave a
general representation for them. He also proved that developed surfaces
are a particular case of ruled surfaces. In addition to his celebrated work
Géométrie Desciptive published in 1798, Monge made major contributions
to the theory of nonlinear partial differential equations. He not only gave
the geometric interpretation, but introduced the new idea of character-
istic curves. Subsequently, the theory of characteristics and integrals as
envelopes became very significant subject of research in partial differential
equations.

Motivated by the study of ruled and developable surfaces in differential
geometry, Euler introduced the parametric equations of surfaces as

x=z(u,v), y=yu,v), z=zu,v), (4.7.29)

where u and v represent two real parameters and he investigated the con-
ditions under which (4.7.29) become a developable surface on a plane. Fol-
lowing a new pioneering work in theoretical cartography by J. H. Lambert
(1728-1877), Euler made also some important contributions to the subject
and actually designed a map of whole Russia. In his paper presented to the
St. Petersburg Academy in 1768, Euler used the ideas of complex functions
to develop a general method of representing conformal transformations from
one place to another.
For example, the equations

Tz =asingcosh, y=asingsinf, z=acosq, (4.7.30)

represent parametrically the sphere with radius a and center at the origin.
The parameters ¢ and 6 are the colatitude and longitude of a point on the
sphere.
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Similarly, the parametric equations of a circular cylinder erected on the
circle in the z — y plane with radius ¢ and center at the origin are

r=acosu, y=asinv, z=u. (4.7.31)

The next great step in differential geometry was made by Friedrich
Gauss and Bernhard Riemann. In his third major treatise ‘ Disquisitiones
generales circa superficies curvas’ (General Investigations of curved sur-
faces) published in 1827, Gauss provided a remarkable new treatment of
the differential geometry of surfaces in three dimensional spaces. Based on
the pioneering work of Euler, Gauss used the idea that the coordinates of
any point on a surface can be represented in terms of two parameters u and
v represented by (4.7.29). From these parametric representations, he wrote

[0z ox B @ @
dr = (%) du + <%> dv, dy= <8u> du + (51)) dv,

(4.7.32)
0z 0z

and he then was able to derive very simple what he himself described as
“almost everything that the illustrious Euler was the first to prove about
the curvature of curved surfaces”. In particular, he proved that the total
curvature k is the reciprocal of the product of the two principal radii of
curvatures k1 and kg at a point (z,y, z) which were introduced by Euler.
The fundamental quantity on any surface S is the element of arc length

ds given by
ds* = da* + dy® + dz*>. (4.7.33)
Using (4.7.32), Gauss expressed (4.7.33) in the form
ds* = E(u,v) du® + 2F (u,v) dudv + G(u,v) dv?, (4.7.34)
where

ox\>  [(oy\® [0z\°
E(u,v) = (%) +<8—z> +<a_u) : (4.7.35)
_Ox Oz Oy ' oy 0z 0z

=%u 9v  ou v ou B
([ Ox 2 o\ > 9z\°

The expression on the right-hand side of (4.7.34) is a quadratic form,
that is, a homogeneous polynomial of degree two in du and dv. This is
known as the first fundamental differential quadratic form of the surface S.

F(u,v) (4.7.36)
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The discrement, D? of the quadratic form (4.7.34) is defined by
D? = EG — F?, (4.7.38)

where D = vV EG — F? is positive at every regular point of the surface.
It follows from (4.7.34) that the differentials of arc of an arbitrary u-
curve and an arbitrary v-curve are given respectively by

ds = VE du, ds = VG dv, (4.7.39)

for, in the first case, v=constant, or dv = 0; and in the second case, du = 0.
If the angle between the directed parametric curves on S at any point
P is w, then, for 0 < w < T,

D
and sinw=—— (4.7.40)

F
VEG VEG
Thus, when F' = 0 at P, these curves intersect orthogonally. This means
that the parametric curves on the surface S form an orthogonal system if
and only if F' = 0.

In general, the angle between two curves on a surface is another funda-
mental quantity. A curve on the surface is determined by a relation between
u and v, and so, equations (4.7.29) represent the parametric representation
of a curve. In the language of differential geometry, the direction of a curve
originating from the point (u,v) is given by the ratio du : dv. If two curves
C and C’ or two directions originating from (u,v), one given by du : dv
and the other by du’ : dv, and if € is the angle between these two curves,
Gauss proved that

COSwW =

E dudu’ + F(dudv’' + du'dv) + G dvdv’
VEdu? + 2Fdudv + Gdv? VEduW? + 2Fdu/dv’ + Gdv'?’
Dldudv’ — dvdu’|
VEdu? + 2Fdudv + Gdv? vVEdu? + 2Fdu/dv’ + Gdv"?

Obviously, (4.7.41) implies that a necessary and sufficient condition that
the curves C' and C’ intersect orthogonally at the point P is that, at P,

cosf = (4.7.41)

sinf =

(4.7.42)

E dudu’ + F(dudv’ + dvdu’) + G dvdv’ = 0. (4.7.43)

The area of a closed region on the surface is given by the double integral

A= // Ddudv. (4.7.44)

In other words, dA = Ddudv is elementary area of the surface referred to
the curvilinear coordinates (u,v).
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Gauss also introduced the second fundamental quadratic form of a sur-
face is given by

edu® + 2f dudv + g dv?, (4.7.45)
where e, f, and g are given by
Tuuw Yuu Ruu Tyuv Yuv Ruv Toyv Yov Rov
1 f 1 1
€= = u u u | = X5 u u w |y 9= 75 u u u
D% Yu 2 D | T Yu 2 9=7 | % Yu 2
x’l} y'U z’l} x'U y'U z’l} x’U y’l} Z'U
(4.7.46)
The discreminant of the second fundamental form (4.7.45) is defined by
d>=eg— 2 (4.7.47)

which may be positive, negative or zero.

Gauss introduced the fundamental idea of curvature at a point P of an
arbitrary curve on the surface S, that is, in general, related to the normal
curvature at P in the direction of the curve. The normal curvature at P in
the direction (dv/du) is given by

edu? + 2 fdudv + g dv?

= . 4.7.4
w E du? + 2Fdudv + G dv? (4.7.48)

Or, equivalently, setting A = %,

e+ 2fA+ g)\?
= — -7 JT 4.7.49
" T EF2FAT GAT (4.7.49)
where e, f, g, E, F, G are evaluated at the point P.

The two directions in which the normal curvature has its extrema are

known as the principal normal curvatures at the point P. In other words,

they are the directions for which the % = 0 so that the values of A which

define them are the solutions of the quadratic equation
(Fg -GN+ (Eg — Ge)A\*> + (Ef — Fe) =0, (4.7.50)

Therefore, the principal direction A = (dv/du) at the point P are given by
the differential equation

(BEf — Fe)du® + (Eg — Ge) dudv + (Fg — Gf) dv* = 0, (4.7.51)

where E, F', G, e, f, g are evaluated at the point P. They are the values of
k for which the two corresponding values of A, obtained from (4.7.49) are
equal. The quadratic equation for A is obtained from (4.7.49) in the form

N(Gr —g) +2(Fk — f)A+ (Ex —e) = 0. (4.7.52)
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The two roots of this equation are equal provided its discriminant is zero
which gives the quadratic equation for x whose values are the principal
normal curvatures so that

(EG —F*)K?> —(Eg—2Ff+Ge)k+ (eg— f?) =0, (4.7.53)

so that the sum and product of the two principal normal curvatures k, and
Ko are given by

1
K1+ Ko = ﬁ(Eg—ZFf—f—Ge), (4.7.54)

2 2
K1Kg = % = % (4.7.55)
The product £ = k1k2 = (d/D)? is called the total curvature (or Gaussian
curvature) of the surface at the point P. The sum (k1 + k2) is known as
the mean curvature of the surface at P.

In differential geometry, surfaces are classified according to the surface of
distinct tangent planes. So, a surface is called a plane, a developable surface
or an ordinary surface according as the surface has a single tangent plane, a
one-parameter family of distinct tangent planes, or a two-parameter family
of distinct tangent planes. The directions at the point P : (u,v) of a surface
S in which the tangent plane has contact of at least the second order are
the directions at P for which

edu® + 2f dudv + g dv* = 0. (4.7.56)

These directions, if they exist, are known as the asymptotic directions at
P. If e, f, g are not all zero at a point P and d? = eg — f?, the equation
(4.7.56) defines at P two directions which are real and distinct, real and
coincident, or imaginary according as d? < 0, d> =0, or d> > 0 at P.

In order to classify points on a surface, the following criteria are used.
A point P on S is called a planar point if e = 0, f =0, and g = 0. A
nonplanar point P is called elliptic, parabolic and hyperbolic according as
d?> > 0,d*> =0, or d> < 0 at P. The asymptotic directions at P are the
directions at P in which the normal curvature is zero.

The fact that k = d?/D? has the same sign as d? can be interpreted as
follows. A nonplanar point P is an elliptic, parabolic and hyperbolic point
according as k > 0, Kk = 0, or k < 0 at the point P. If P is an elliptic point,
k > 0 and k1 and ko are of the same sign. Then « is always of this sign,
since k varies between k1 and k5. Thus, the centers of curvatures of the
normal sections at P all lie on one half of the surface normal, and so, the
surface in the neighborhood of P lies on one side of the tangent plane.
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If P is a parabolic point, x = 0 and either k; = 0 or k3 = 0. In other
words, the single asymptotic direction coincides with a principal direction.
Except along this direction, the surface is on one side of the tangent plane.

If P is a hyperbolic point, x < 0 and hence, k1 and ko are opposite
in sign. In this case, k is positive for certain directions, negative for other
directions, and zero in the two asymptotic directions. Thus, the surface lies
in part on the one side, and in part on the other side of the tangent plane,
and cuts through it along the asymptotic directions.

If every point of a surface is an elliptic point, k is always positive and
the surface is known as a surface of positive curvature. An ellipsoid is an
example of positive curvature, and a sphere is a surface of constant positive
curvature.

If all points of a surface are hyperbolic, then k is always negative, and
the surface is called a surface of negative curvature. A hyperbolic paraboloid
is an example of a surface of negative curvature.

Finally, if all points of a surface are parabolic or planar, then k = 0 and
then d> = 0 and conversely. Thus, the only surfaces for which the total
curvature is identically zero are the planes or the developable surfaces. A
cone, for example, consists of only parabolic points.

A curve C on a surface S whose direction at each and every point is
a principal direction is known as a line of curvature. If the surface is
not a plane or a sphere, these are two principal directions at each point
and they are mutually orthogonal. In this case, there are two families of
lines of curvature, and they form an orthogonal system which satisfies the
differential equation (4.7.53).

Every curve on a plane or a sphere is a line of curvature, because every
direction at a point is a principal direction. It can be proved that a neces-
sary and sufficient condition that the system of parametric curves consists of
lines of curvature is that F' = 0 and f = 0. We assume that the parametric
curves are lines of curvature: F = f = 0 so that (4.7.48) reduces to

o L g d” (4.7.57)
E du? + G dv?

Since the directions of the parametric curves at a point P are the princi-
pal directions at a point P, the principal normal curvatures are determined
by putting dv = 0 or du = 0 in (4.7.57). Consequently, if k1 is the prin-
cipal normal curvature in the direction of the u-curve, and ko that in the
direction of the v-curve, then

K1 = Ko = (4.7.58)

Qle

e
Ev
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We next rewrite (4.7.57) in the form

E du? G dv?

“:’“<Edu2+Gdu2)+*€2 (Edu2+de2)' (4.7.59)
If « is the angle from the positive direction of the w-curve to the direc-
tion (dv/du), then the coefficient of 1 in (4.7.59) is cos? & and that of kg
is sin? a. Consequently, equation (4.7.59) reduces to the celebrated Euler
equation (4.7.26). In other words, the Euler equation states that the total
curvature x has the same value for two angles o which are negative to each
other. In particular, at a hyperbolic point, the asymptotic directions are
perpendicular if and only if kK = 0 when a = +7, that is, if and only if
the mean curvature 3(ky + k2) = 0. A surface, other than a plane, for
which the (k1 4 k2) given by (4.7.54) is identically zero is known as a min-
imal surface. It is a surface of negative curvature at every point of which
the asymptotic directions intersect at right angles. A right helicoid with
parametric equations

r=wucosv, y=wusinv, z=av, a#0 (4.7.60)

is an example of a minimal surface. It can easily be verified that F = 1,
F=0,G =u?+a? D? = u?+a?. Similarly, in this case, e = 0, f = —a/D,
g =0,d> = —a?/D?% Since e = 0 and g = 0, the asymptotic directions
at a point P are given by (4.7.56), that is, they are given by du = 0 and
dv =0 at P. Thus, at every point, the asymptotic directions are mutually
orthogonal and therefore, the right helicoid is a minimal surface. In this
case, the differential equation (4.7.51) becomes

du?® — (u? 4 a®)dv? = 0. (4.7.61)
Thus, the equations of two families of lines of curvature on the helicoid are

duF vVu?+a2dv=0. (4.7.62)

Integrating these equations gives the equations of the lines of curvature,
that is,

sinh ™! (g) —w=¢;, sinh7! (%) Fo=co (4.7.63)

where ¢; and ¢y are an arbitrary constants.

In view of (4.7.55), it turns out that xk = —a?/(u?+a?)?. Thus, the total
curvature of the helicoid is the same at all point of a circular helix, u =
constant and tends to zero as the radius of the circular cylinder containing
the helix becomes infinite.
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We conclude this section by adding the revolutionary approach to the
subject of the modern foundations of geometry by Bernhard Riemann based
on the work of Gauss and Euler. The Riemannian geometry was not just an
extension of Gauss’ differential geometry of surfaces in three-dimensional
space. It dealt with n-dimensional intrinsic geometry for any space. His to-
tally new treatment was concerned with n-dimensional space as a manifold
where a point in the manifold is represented by assigning special values to
n variable parameters, x1, z2, -+, x, so that the set of all such possible
points constitute the n-dimensional manifold. These n variables are called
the coordinates of the manifold. He introduced the distance between two
generic points whose corresponding coordinates differ only by infinitesimal
amounts so that the square of this distance is

n n
d82 = Z Z gijdxidxj, (4764)
i=1 j=1
where g;; are functions of coordinates x1, 2, ---, ®n, gij = gj and the
right hand side of (4.7.64) is always positive for all possible values of dz;.
This expression for ds? is a simple generalization of the Euclidian distance
(or metric)

n
ds* = " dw} = da} +dad + - + da}. (4.7.65)
i=1
It is important to point out that Riemann’s curvature for the n-dimensional
manifold reduces to Gauss’ total curvature of a surface in three-dimensional
space.

Historically, Euclid met with a serious difficulty by defining parallel lines
as coplanar straight lines which do not intersect however far they be ex-
tended in either direction and by adopting his famous Parallel (or Fifth)
Postulate (or Aziom) as a basic assumption. This can be stated in mod-
ern language as follows: “If a point P does not lie on a straight line ¢ in
a plane, then in the plane there is exactly one line m passing through P
parallel to the line ¢”. This was inconsistent in Euclidean geometry and
could not be proved on the basis of the Euclid other nine axioms. This
was a famous unsolved problem in mathematics for over 2000 years. It was
Karl Friedrich Gauss who first reconfirmed that the Euclid Parallel Axiom
cannot be proved from other axioms. So, this axiom was not only a genuine
geometrical concern, but a fundamental physical problem for a long time.
In order to revolutionize Euclidean and differential geometries and to estab-
lish their relationship with the physical world, Riemann first created a to-
tally new n-dimensional geometry in 1854 which is now as the Riemannian
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(or non-Euclidean elliptic) geometry. It not only opened the door for the
creation of non-Euclidean geometries, but also provided the mathematical
framework for the Einstein theory of general relativity. Riemann is regarded
primarily as the most modern mathematician, but he was deeply concerned
with the physical spaces and the relationship of mathematics to the physi-
cal world. He first realized that Euclidean geometry is not the geometry of
physical space and so, it became absolutely necessary to discover a totally
new non-Euclidean elliptic geometry or the Riemannian geometry which
includes Euclidean geometry as a limiting case. In 1830, Nicolai Ivanovich
Lobachevsky (1793-1856) of Russia, and in 1832, Jdnos Bolyai (1802-1860)
of Hungary independently discovered a totally new non-Euclidean hyper-
bolic geometry in which the Euclid Parallel Axiom simply does not hold.

4.8 Spherical Trigonometry

Spherical triangles and great circles play important roles in several subjects
including astronomy, geodesy and navigation. Because of its major applica-
tions in quantitative astronomy, spherical trigonometry was studied before
plane trigonometry by many including Hipparchus (second century B.C.),
Claudius Ptolemy (second century A.D.) who wrote the most influential
book known as the Almagest (or Great Collection) extending the work of
Hipparchus. On the other hand, modern progress in the subject was made
in the 18th century by Leonhard Euler and German mathematician, A. F.
Mobius (1790-1868) and others. Euler made some major contributions to
quantitative astronomy and spherical trigonometry.

In order to describe Euler’s work on spherical trigonometry, we need
some basic concepts, and notations of spherical triangles and great circles.
The set of all points in space whose distance from a fixed point O are equal
to a fixed distance r is called the sphere of radius r and center O. It can
be proved that if a plane intersects a sphere in more than one point, the
intersection is a circle. If a plane passes through the center of a sphere,
its intersection with the sphere is a great circle of radius r. A circle of
intersection of a sphere with a plane not passing through the center of the
sphere is called a small circle of the sphere, and so, the radius of a small
circle is less than the radius r of the sphere.

If two points A and A’ of a sphere are opposite ends of a diameter, they
are antipodal or A’ is the antipode of A. Two great circles intersect in a pair
of antipodal points and divide the surface of the sphere into four regions
called lunes, as shown in Figure 4.25.
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Fig. 4.25 A spherical triangle ABC and the four lunes.

Throughout this section, we denote a spherical triangle by ABC, its
angles at the vertices A, B, C by A, B, C, respectively, and its sides by
a = arc BC, b = arc AC and ¢ = arcAB, so that A, B, C < 7r and
0<a+b+c<2nr.

The spherical triangle A’B’C’ is called the polar spherical triangle, as
shown in Figure 4.25. Obviously, it has three angles A’, B/, C’ and three
sides a’, b’ and ¢'.

Euler Theorem 4.8.1. The area of a spherical triangle ABC' on the
unit sphere is

A=A+B+C—m. (4.8.1)

The Figure 4.25 shows that the great circles containing the sides of the
spherical triangle ABC' intersect pairwise in the vertices A, B and C' and
their corresponding antipodes A’, B’ and C’. The hemisphere in front of the
great circle BCB'C’ is divided into four spherical triangles ABC, AB'C’,
AB'C and ABC’ whose areas are denoted by A\, A1, Ag, and Az. It follows
from the Figure 4.25 that the spherical triangle A’BC' is congruent to the
spherical triangle AB'C’ of area A;. In view of the fact that the area of
the lune of angle A is 2A, we obtain

A + /Ay = area of the lune A = 2A,
A + Ao = area of the lune B = 2B,
A 4+ A3 = area of the lune C' = 2C,
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so that
QA =2A42B+2C — (A+ L1+ Do+ AN3) =2A+2B+2C — 2.

This proves the desired result.

More generally, the area of a spherical triangle ABC on a sphere of
radius 7 is (A + B+ C — m)r.

Since the surface area of the sphere of radius r is 4772, we obtain

0<(A+B+C—m)r* < 4m?.
Or
<A+ B+ C <bm. (4.8.2)

Euler Theorem 4.8.2. (The Law of Sines). In any spherical trian-
gle ABC, the sine of the sides are proportional to the sine of the opposite
angles. Or, in mathematical notations,

sina sin b sin ¢
sinA  sinB  sinC’ (483)
Proof. We consider a spherical triangle ABC' and draw a great circular
arc C'D perpendicular to arc AB or arc AB extended. In Figure 4.26, CD
lies inside or outside the spherical triangle ABC. In either case, it follows

from the right-angled spherical triangle AC'D and Napier’s rules,
sin h = sin b sin A. (4.8.4)

¢ D

Fig. 4.26 A spherical triangle ABC with angles A, B and C, and sides a, b and c.
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Similarly, from the right-angled spherical triangle BC' D, we obtain
sinh = sinasin B. (4.8.5)
Equating (4.8.4) and (4.8.5) gives
sinasin B = sin bsin A.

Dividing both sides by sin Asin B yields
sina sinb
= : 4.8.6
sinA sinB ( )
Similarly, drawing a perpendicular from the vertex A to arc BC, we can
show that

sinb sin ¢
= . 4.8.
sinB  sinC (4.8.7)
Obviously, equations (4.8.6) and (4.8.7) are equivalent to the desired result

(4.8.3).
Euler Theorem 4.8.3. (The Law of Cosines for sides). In any
spherical triangle ABC,

cosa = cosbcosc+sinbsinccos A, (4.8.8)
cosb = cosccosa + sincsinacos B, (4.8.9)
cosc = cosacosb+sinasinbcos C. (4.8.10)

Proof. Using Figure 4.26 with arc AD = z and arc DB = ¢ — z and
applying Navier’s rules to right-angled spherical triangle BC'D, we obtain

cosb=coshcosz, b 90°. (4.8.11)
Similarly, from the right-angled spherical triangle AC'D, we
cosa = cos hcos(c — x). (4.8.12)
Dividing (4.8.12) by (4.8.11) implies that, since cosb # 0, we obtain

cosa  cos(c—x) )
= =cosc+sinctanz.

cosb cos

Or,
cosa = cosbcosc + cosbsinctan x. (4.8.13)
It follows from the spherical triangle AC'D and Navier’s rules that
cos A = cotbtanzx.
Or,
tanz = cos Atanb. (4.8.14)
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Substituting tan z from (4.8.14) in (4.8.13) gives the desired result (4.8.8).
Similarly, formulas (4.8.9) and (4.8.10) can be proved by drawing per-
pendiculars from the vertices A and B. In other words, formulas (4.8.9) and
(4.8.10) can be derived from (4.8.8) by a cyclic permutation of the letters.
Euler Theorem 4.8.4. (The Law of Cosines for angles). In any
spherical triangle,

cos A = —cos BcosC + sin Bsin C cosa, (4.8.15)
cos B = —cosCcos A+sinCsin Acosb, (4.8.16)
cosC' = —cos Acos B + sin Asin B cosc. (4.8.17)

Proof. We consider the spherical polar triangle A’B’C’ of the triangle
ABC. We use the law of cosines for sides to A’B’'C” to obtain
cosa’ = cosb’ cosc + sinb’sin ¢ cos A. (4.8.18)
Since o' = (1 — A), b = (n—B), = (r—C), and A’ = (7 — a), and since
cos(m — 0) = —cosf and sin(m — ) = sin 6, it follows from (4.8.18) that
—cos A = (—cos B)(—cosC) + sin BsinC (— cosa).
Multiplying this result by (—1) gives the desired formula (4.8.15).

Similarly, formulas (4.8.16) and (4.8.17) can be derived.
Euler Theorem 4.8.5. (The half-angle formulas).

A \/sin(s —b)sin(s — ¢)

— = 4.8.1
) sinbsin ¢ ’ (48.19)
sin 2 = \/Sln(s —o)sin(s —a) (4.8.20)

2 sincsina

. C \/sin(s —a)sin(s — b)
T sinasinb ’ (4821)

where 25 = (a + b+ ¢).
Proof. We use the formula (4.8.8) for the law of cosine for sides as
cos A — cosa.—co.sbcosc, (4.8.22)
sinbsinc
and substitute it to the trigonometric identity

A
2sin? 3= 1—cosA

1 cosa — cosbcosc

sinbsinc
cos(b—¢) — cosa

sinbsin ¢

_2sin%(a+b—c)sin%(a—b+c) (4.8.23)

sinbsine
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Using s—a = 4(—a+b+c), s—b=3(a—b+c)and s—c = 2(a+b—c)
in (4.8.23), we obtain the desired result (4.8.19).
Similarly, we obtain

cosa — cosbcosc

A
2cos? = =14cosA=1+ - -
2 sinbsinec

cosa — cos(b+ ¢)
sinbsinc

2sini(a+b+c)sing(—a+b+c)

sinbsinc
Consequently,
A sin s sin(s — a)
§— =\ ————— 2. 4.8.24
€os 2 sinbsinc ( )
Similarly,
cos B _ sinfsin(.s - b)7 cos C _ sinfsin(.s -0 . (4.8.25)
2 sincsina 2 sin a sin b

Dividing (4.8.19) by (4.8.24) gives

tan %A = \/Sin(s —b)sin(s —¢), (4.8.26)

sin ssin(s — a)

Multiplying the numerator and denominator inside the radical sign in
(4.8.26) by sin(s — a) and simplifying yields the result

tan — =

1 sin(s — a) sin(s — b) sin(s — ¢)
2 sin(s—a) \/ : (4.8.27)

sin s

Similarly, we can derive the following similar results

B 1 sin(s — a) sin(s — b) sin(s — ¢)
tan 2 sin(s —b) \/ sin s - (48.28)
tan C __ 1 - \/sm(s —a) sm(.s —b)sin(s — ¢)  (48.29)
2 sin(s—c¢) sin s






Chapter 5

Euler’s Formula for Polyhedra,
Topology and Graph Theory

“In topology we are concerned with geometrical facts that do
not even involve the concepts of a straight line or plane but
only the continuous connectiveness between points of a figure.”

David Hilbert

“It often happens that understanding of the mathematical na-
ture of an equation is impossible without a detailed understand-
ing of its solution.”

Freeman Dyson

5.1 Euler’s Formula for Polyhedra

Although the study of geometry, in general and polyhedra, in particular
held a central place in Greek geometry, it remained for FEuler to discover
a remarkable topological formula for simple polyhedra. In the eighteenth
century, topology was considered the study of position and so, it was also
known as analysis situs which dealt with the qualitative behavior of geo-
metrical figures. Euler may be considered as the founding father of topol-
ogy. He was universally known for the topological discovery in 1752 of the
celebrated polyhedra formula

V-E+F=2, (5.1.1)

where V' denotes the number of vertices, E the number of edges, and F
the number of faces in a simple regular polyhedron (which is also called a
Platonic solid). By a polyhedron is meant a solid whose surface consists of
a number of polygonal faces.

153
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On the basis of the Euler formula (5.1.1), it is easy to show that there
are precisely 5 regular polyhedra (cube, tetrahedron, octahedron, dodec-
ahedron and icosahedron). For suppose that a regular polyhedron has F
faces, each of which is an n-sided regular polygon, and that r edges meet
at each vertex. Counting edges by faces and vertices, we see that nF = 2F
for each edge belongs to two faces, and therefore is counted twice in the
product nF'. Further, since each edge has two vertices, rV = 2FE. Thus,
the formula (5.1.1) becomes

2F 2F
= _E+Z= =2 (5.1.2)
T n

Or, equivalently,

11 1 1

;+E—§+E. (5.1.3)
We already know that » > 3 and n > 3, since a polygon must have at least
three sides, and at least three sides must meet at each polyhedral angle.
But r and n cannot both be greater than three, for then the left hand side
of equation (5.1.3) could not exceed % which is not possible for any positive
number E. Thus, we have to find out what values r may have when n = 3
and what values n may have when r = 3. It turns out that the total number
of polyhedra given by these two cases is precisely 5. When n = 3 equation
(5.1.3) becomes

1 1 1
- =4 =, 5.1.4
r 6 + E ( )

r can therefore have values 3, 4, or 5 (6 or any number greater than 6 is
not possible, because % is always positive). For these values of n = 3 and
r =3, 4,5, we find E = 6, 12, or 30, corresponding to the tetrahedron,
octahedron, and icosahedron respectively. Similarly, for r = 3, equation
(5.1.3) gives

1 1 1
- = -4 —. 5.1.5
n 6 + FE ( )

Thus, it follows from this equation that n = 3, 4, or 5, and £ = 6, 12, or
30 respectively. These values correspond to the tetrahedron, cube (hexa-
hedron) and dodecahedron respectively. Substituting these values for n, r,
and F in nF = 2F and rV = 2FE, we obtain the number of vertices and
faces of all five regular polyhedra: tetrahedron (V =4, E = 6, F = 4),
cube (V =8, E =12, F = 6), octahedron (V =6, E = 12, F = 8), do-
decahedron (V' = 20, E = 30, F = 12) and icosahedron (V' = 12, E = 30,
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(a) (b)

Fig. 5.1 (a) Cube (V =8, E =12 and F = 6), (b) Tetrahedron (V = 4, E = 6 and
F=4)

F = 20). The first two regular polyhedra - the cube and tetrahedron are
shown in Figure 5.1 (a) and 5.1 (b).

If a given simple polyhedron is a hollow with a surface made of thin
rubber, then we cut out one of the face of the hollow polyhedron so that
the number of polygons will be one less than in the original polyhedron,
since one face was removed. However, the resulting network of vertices and
edges will contain the same number of vertices and edges as in the original
polyhedron. Consequently, it turns out that for the network

V-E+F=1. (5.1.6)

This is also universally known as the Fuler formula, where V' is the number
of vertices, E the number of edges, and F' the number of faces of the given
network. Mathematically, a network is a generalization of a graph, that is,
a collection of vertices (or nodes) that are connected by edges (or links). A
couple of simple examples of network is given in Figure 5.2.

The above classic work of Euler in the area of topology is now known
as the theory of graphs and networks which constitutes finite geometry.

The Euler formula (5.1.1) holds for any simple polyhedron and does not
hold for a non-simple polyhedron. But the range of validity of this formula
goes far beyond the polyhedra of ordinary geometry, with their flat faces
and straight edges. However, the proof of the Euler formula would apply
equally well to a simple polyhedron with curved faces and edges, or to any
subdivision of a surface of a sphere into regions bounded by curved arcs.

Modern studies of topology began with the Euler celebrated polyhedra
formula. The modern idea of rigor in analysis started from a theorem of
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(a) (b)

Fig. 5.2 Network (a) (V =7, E = 12, and F = 6) and Network (b) (V =8, E =13
and F = 6).

Camille Jordan (1838-1922) which states that a simple closed curve C in
the plane divides the plane into exactly two regions, an inside and an out-
side. This theorem, first stated in Jordan’s famous book Cours d’Analyse,
is obviously true for a circle or an ellipse, but it is not that evident for a
complicated curve like twisted polygon. In fact, the Jordan curve theorem
is quite easy to prove for the well-behaved curves such as polygons or curves
with continuously turning tangents. It follows from the Jordan curve theo-
rem that topology deals with providing rigorous proofs for many simple and
obvious assertions. The renowned “Four-Color Problem (or Conjecture)” is
a good example which states that four colors are sufficient to color any map
on a plane so that areas with common boundaries are colored differently.
In coloring a geographical map, it is necessary to use different colors to
any two countries that have a portion of their boundary in common. The
Four-Color Problem can be stated in the following mathematical theorem:
For any subdivision of the plane into non-overlapping regions, it is always
possible to mark the regions by one of the numbers 1, 2, 3, 4 in such a way
that no two adjacent regions have the same number. The Four-Color Prob-
lem has indeed been proved for all maps containing less than 38 regions.
So, it remains one of the great unsolved problem or conjecture in mathe-
matics. A remarkable fact associated with the four-color problem is that for
surfaces more complicated than the plane or the sphere the corresponding
theorems have really been proved. Paradoxically, the analysis of more com-
plicated geometrical surfaces seems in this respect to be easier than that
of the simplest cases. Many simple but important topological facts occur
in the study of two-dimensional surfaces. For example, when we compare
the surface of a sphere with that of a torus, two surfaces are fundamentally
different. On the sphere, as in the plane, every closed curve separates the
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surface into two parts. But on the torus there exist closed curves that do
not separate into two parts. These facts suggest that a definition of genus
of a surface as the largest number of non-intersecting simple closed curves
that can be drawn on the surface without separating it. So the genus of the
sphere is zero and that of the torus is one. The genus of a surface with two
holes is two and that of a surface with g holes is g. The genus is, therefore,
a topological property of a surface and remains the same if the surface is
deformed.

In order to introduce the Euler characteristic of a surface, we consider
a closed surface S of genus g that can be divided into a number of regions
by marking a number of vertices on S and joining them by curved arcs. It
can be proved that

V-E+F=2-2g, (5.1.7)

where V is the number of vertices, E' the number of arcs, and and F' is the
number of regions. The number 1 = 2—2g is called the Fuler characteristic
of a closed surface of genus g and thus, 1 depends only on the surface on
which the map is drawn, and not on the map itself. Thus, the Euler convex
polyhedra corresponds to maps on a sphere of genus zero so that the Euler
characteristic, n = 2, whereas Cauchy’s plane networks correspond to maps
on a plane so that n = 1. It is relatively simpler to study the topological
nature of surfaces by means of plane polygons with certain pairs of edges
conceptually identified. The method of identification can be used to define
three-dimensional closed manifolds similar to the two-dimensional closed
surfaces. It is important to point out that the Euler’s classic formula (5.1.1)
has subsequently been generalized by Henri Poincaré in higher dimensions,
and indeed, it is a special case of a general topological result. Since the
surface of the regular polyhedra are all homeomorphic to the sphere, they
have genus zero and the Euler characteristic 2.

Using arguments which were topological in a sense, Euler completely
solved in 1736 the famous puzzle of the Seven Bridges of the Prussian city
of Konigsberg on the River Pregel where tributaries meet at an island as
shown in Figure 5.3. The problem is to determine a route around the city
so that one can cross all seven bridges once and only once. Many people
made an attempt to devise such a route and had always failed. Euler first
treated the problem from a mathematical point of view and proved that
such a route is impossible. To demonstrate his approach, Euler observed
that the Konigsberg bridge-problem seems a suitable candidate and writes:
“I have therefore decided to give here the method which I have found for
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river island

Fig. 5.3 The Konigsberg Seven Bridges Problem (Ian Stewart, 2008).

solving this kind of problem, as an example of the geometry of position.”
Euler then describes the problem in Figure 5.3 with his notation as follows:

“From this, I have formulated the general problem: whatever be the
arrangement and division of the river into branches, and however many
bridges there be, can one find whether or not it is possible to cross each
bridge exactly once? ... My whole method relies on the particularly conve-
nient way in which the crossing of a bridge can be represented. For this I
use the capital letters A, B, C, D for each of the land areas separated by
the river. If a traveler goes from A to B over bridge a or b, I write this as
AB.

Euler’s abstract formulation of this problem is shown by the Kénigsberg
graph in Figure 5.4 (a) where land areas are the nodes (vertices) and edges
are connecting bridges. It follows from the Euler formulation that it is
not possible to devise such a route since all four nodes (representing land
areas) in this case are of odd degree, where the degree of a node is the
number of edges which meet at the node. In other words, Euler’s graph of
the problem as shown in Figure 5.4 (a) where the vertices C, A, B, and
D representing the different land areas shows that a route is impossible.
However, with an extra bridge added as shown in Figure 5.4 (b), one route
CgDeAcCdAaBfDhBbA is now possible, where CgD denotes the path
that begins at vertex C' and traverses edge g to arrive at the vertex D.
Remarkably, Euler’s treatment of the Konigsberg bridge-problem led him
to formulate a more general mathematical problem in graph theory which
dealt with finding a path which contains each edge of the graph once and
only once. Such is a path is known as the Fulerian path. Euler also proved
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o QF
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(@) (b)

Fig. 5.4 The Eulerian Graph: (a) with Seven Bridges and (b) with Eight Bridges.

the existence of Eulerian paths in general graphs. After his remarkable
discovery of graph theory in 1736, the last three centuries have produced
major advances in mathematical theory of graphs and networks and their
applications to a wide variety of subjects. These include, among others,
physics, chemistry, engineering, business, electronics, computer science, so-
ciology, psychology and transportation.

More precisely, topology is the study of those properties of geometric
objects which remain unchanged under bi-uniform and bi-continuous trans-
formations. Such transformations can be thought of as bending, stretching,
twisting or compressing or any combination of these. It is assumed that the
object being deformed or transformed is essentially elastic and capable of
any degree of such manipulation. In his famous book on ‘Anschauliche Ge-
ometrie’ (Geometry and Imagination), David Hilbert remarked: “In topol-
ogy we are concerned with geometrical facts that do not even involve the
concepts of straight line or plane but only the continuous connectiveness
between points of a figure.” Although some of the original ideas go back to
Euler, it was really with the brilliant work of Henri Poincaré in 1895 that is
universally known as the beginning of systematic attempts for developing
topology as an independent mathematical discipline on its own merit.

In his letter to Goldback in 1757, Euler mentioned the problem of
Knight’s Tour on a chessboard in graph theory and combinatorics. A knight
tour is a sequence of moves around the chessboard of the sixty-four squares
which returns the knight to the square at which it began and visits no other
square more than once. Such tours which include each of the sixty-four
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squares correspond to the Hamiltonian circuits. In 1759, Euler solved the
problem using a graph in which the nodes represent the sixty-four squares.
The Knight’s Tour Problem is a special case of a general problem in graph
theory, that is, whether it is possible to find a circuit, in a given graph,
which passes through each vertex only once. Fuler not only solved the
Knight’s tour problem on a standard chessboard, but also formulated the
Knight’s tour on a non-standard chessboard — one with n squares in each
direction, instead of the usual eight squares. In graph theory, this is now
known as Hamilton’s Tour Problem after the name of the Irish mathemati-
cian. Sir William R. Hamilton who worked on such problems in the 1850s.
Indeed, Euler solved the Knight’s Tour problem as an early special case of
the Hamilton’s Tour Problem. Hamilton also considered another famous
puzzle problem consisting of twenty vertices of a solid dodecahedron where
each vertex represents a city in Europe. This problem was to find a route
along edges which visited each city exactly once. The graph in Figure 5.5
represents a two-dimensional version of the Hamilton’s puzzle where the
nodes corresponds to the vertices of the dodecahedron and branches to the
edges. In the language of graph theory, the problem is to solve Hamilton’s
puzzle by finding a Hamiltonian circuit in the graph.

In 1514, Albrecht Diirer’s masterpiece painting, Melencolia I, there was
a picture, called a magic square which was apparently developed for math-

Fig. 5.5 The graph of Hamilton’s puzzle.
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ematical entertainment. Thus, the magic square is a 4 x 4 matrix My of
integers of the form

[ 16 3 2 13 ]
5 10 11 8
M, =
9 6 7 12
| 4 15 14 1 |

All integers from 1 to 16 are used to formulate the 4 x 4 magic square
M, with a special property which states that the sum of each row, column,
and two diagonals is 34. Thus, an n x n matrix M, is called a magic square
if the sum of the elements in each row, each column, and both diagonals is
the same. Clearly, the common sum of the rows, columns, and diagonals is
a function of n, and is called the weight of M, defined by wt(M,,)

n(n®+1)

wt(M,,) = — (5.1.8)

Furthermore, the n X n magic square matrix M,, contains each of the entries
1, 2,3, ---, n? exactly once.

Using a modern and sophisticated computer program, MATLAB de-
signed especially for matrix computations, the 3 x 3 magic square matrix
M3, and the 5 x 5 magic square matrix Mj, are given below

17 24 1 8 15

8§ 1 6 23 5 7 14 16
Ms; = 3 5 7 and Ms = 4 6 13 20 22
4 9 2 10 12 19 21 3

11 18 25 2 9

Thus, it follows from the matrices M3 and M5 and formula (5.1.8) that
wt(M3) =15 and wt(Ms) = 65. (5.1.9)

Many great mathematicians like Euler and the British mathematician,
Arthur Cayley (1821-1895) found magic square puzzle very entertaining and
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worth studying from a mathematical point of view. There are also other
mathematical puzzles of considerable interest. Among these are problems
closely related with the theory of probability, map-coloring and the Euler
Knight Tour Problems. In 1779, Euler spent a considerable amount of time
to investigate the classical magic square from a mathematical point of view.

It is also equally important to point out that the problem of magic
square has closely been related to another famous old problem, known as
Graeco—Latin Squares. In response to a question posed to him by the
Empress Catherine, Euler first considered the Graeco—Latin Squares in 1782
which dealt with 36 army officers, six each of the six different ranks and six
different regiments so that they can be placed in a square such that exactly
one officer in each rank and from each regiment appears in each row and
column. Euler investigated this royal assignment mathematically and made
a famous conjecture that a Graeco—Latin square of size n would never exist
for any integer n of the form (4k + 2) as he was not able to prove it. After
200 years later, Euler’s conjecture was proved to be incorrect by several
mathematicians including Bose and Shrikhande (1960), Bose et al. (1962),
Klyve and Stemkoski (2006) of the twentieth century using different modern
techniques from many areas of mathematicians and statistics, including
graph theory, finite fields, projective geometry, block designs and modern
computers. In his 1776 paper, Euler showed that Graeco—Latin Squares are
closely related to magic squares and used Graeco—Latin squares of orders
3, 4 and 5 to construct magic squares. Since he was unable to construct
Graeco—Latin Squares of order 6, Euler used a different method to construct
magic squares of order 6. In his famous paper, Zhu Lie (1982) gave the
most elegant disproof of the Euler conjecture using his own new method
combined with the singular direct method. On the other hand, Stinson
(1984) conclusively proved the 36-officer problem by using a transverse
design, finite vector spaces and graph theory. It is evident from the above
discussion that Euler’s work and conjecture ranked among the most fertile
problems in the history of mathematics. So, there are much more important
and interesting problems in mathematics for the 21st century and still the
subject of active research.

With the development of Georg Cantor’s (1845-1918) theory of infinite
sets and transfinite numbers, the set theory was firmly established as the
foundation of mathematics, in general, and analysis, in particular. Once
David Hilbert said: “Cantor created a paradise from which nobody shall
expel us.” The deeper study of set theory led to that of topology from the
analytic and abstract point of view. The generalization of one of Cantor’s
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most suggestive innovation in conceiving any geometrical configuration as a
set of points in the Euclidean space, by René Maurice Fréchet (1878-1956)
and Felix Hausdorff (1868-1942) and by others to abstract spaces led to
a rapid development of analytic topology. Fréchet was responsible for the
theory of metric spaces in topology. It is generally believed that “... topol-
ogy became of the first-rate scientific importance in dynamical researches
of Poincaré, particularly in connection with the problem of three-bodies at-
tracting one another in space according to the Newtonian law of gravitation,
for example the sun and two of its planets. It was a question of describing
the families of possible orbits. Numerical calculation was too laborious and
too slow to reveal the extremely intricate motions for more than a step at
a time. A qualitative attack was indicated, and for this Poincaré (1895,
1900, 1904) created a major division of topology. He originated a rigor-
ous combinatorial topology for space of any finite number of dimensions.
Some of what he did has still to be surpassed.” Poincaré not only discussed
the set topology and algebraic topology, but also developed successfully
the combinatorial methods to study invariant properties of complexes and
to elucidate the full significance of the Betti numbers. He is the founding
father of the dynamical systems and qualitative behavior of mathematics.

Considerable progress on topology was made during the first half of
the twentieth century. Since the middle of 1950s, the major focus in the
development of topology has undoubtedly been in the study of manifolds.
Roughly, a manifold is a generalization of the idea of space or surface to any
number of dimensions. So, simple examples of one-dimensional manifold
are just curves (with the real line R, as a special case), and two-dimensional
manifolds are surfaces (with two-dimensional plane or manifold, R?, as a
special case). In other words, a plane consists of all points uniquely de-
termined by a pair of numbers (z,y). It is therefore a two-dimensional
manifold. The space studied in three-dimensional analytical geometry
may be considered as a three-dimensional manifold because each point is
uniquely determined by three coordinates (x,y,z). In general, n num-
bers (z1, 22, -+ ,Z,) are required to specify each point of an n-dimensional
space, and so it is called an n-dimensional manifold. However, it is possible
to think of many familiar kinds of manifolds which have nothing to do with
space or geometry. It is possible to draw pictures of one or two-dimensional
manifolds, however, manifolds of dimensions three or more cannot easily be
illustrated. However, there are many new remarkable discoveries in the the-
ory of manifolds of dimensions three, four or more during the second half
of the twentieth century.
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5.2 Graphs and Networks

Historically, Euler’s original formulation of the Konigsberg Seven-Bridge
Problem in terms of graphs represented the start of the graph theory as
it is known today. On the other hand, the Four-Color Problem can also
be reformulated in terms of coloring the network so that the nodes (or
vertices) of the network can be colored in such a way that any two nodes
which are connected together must have different colors. If all networks can
be colored using four different colors so can all maps and vice versa. Thus,
the network formulation of the Four-Color Problem provides an alternative
way of looking at it, and leads to the mathematical study of networks in
finite geometry.

In modern mathematical language, a network is called graph which con-
sists of a set of n points called wvertices (or nodes) a1, az, -+, a,. The
lines (or curves) joining the vertices are called edges (or links). A typical
graph G of ten vertices, 12 straight edges, and one curved edge joining the
vertex a; to vertex as is shown in Figure 5.6 (a). Another graph Gp of
three vertices and four edges is shown in Figure 5.6 (b).

In the same graph G, there can be more than one line or curve joining
a pair of vertices as in the Euler Seven-Bridge Problem. In graph G, there
are 12 straight edges and one curved edge. For example, there is a straight
edge and a curved edge joining the first vertex a; to the second vertex as
which can be represented by the straight edge a12 and a curved edge ajs.
In order to be quite general, some vertices may be disconnected, such as
the vertex, a19 and some edges may cross others, such as agg and ars.

a;
a; ae
Ao
a, as as
az a3 a4 a2
(a) G (b) G1

Fig. 5.6 (a) A graph G of ten vertices, (b) A graph Gy of three vertices and four edges.
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It can be shown that a graph G with n vertices can have at most n(n —
1)/2, edges. For example, the graph G in Figure 5.6 (a) has 10 vertices
without curved edge a1z so that the actual number of edges is 12 and the
maximum numbers of straight edges is 10(10 — 1)/2 = 45. The number of
edges E can also be related to the degree of the vertices. In the graph G
in Figure 5.6 (a), at the vertex ag, there are three edges, so its degree is
3 which is usually denoted by d3 = 3. At the vertex ag, there is only one
edge so that dg = 1. On the other hand, there is no edge at the isolated
vertex ajg, and hence, djp = 0. By counting all edges and noting each edge
joins two vertices (G has no curved edges), it follows that the sum of all
the degrees of the vertices is equal to twice the total number of edges E so
that

10
> dn=2E=2-12. (5.2.1)
n=1

It is important to point out that it is the degree of the vertices of the
Eulerian graph that provide the hint of understanding the Euler problem of
crossing the Konigsberg seven bridges. Since the degree of every vertex of
the Eulerian graph as shown in Figure 5.4 (a) is odd, the solution of Euler’s
seven-bridge problem is impossible,that is, there is no route which starts
at C, A, B, or D, and ends at C, A, B, or D and crosses each bridge only
once. However, with one extra curved edge added between D and B as in
Figure 5.4 (b), the solution of the Euler problem is possible, because the
degrees of B and D are even. So it is possible to start at C' and end at A, or

A B

(b)

Fig. 5.7 (a) A star graph, (b) A graph with five vertices and eight edges.
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vice versa. Hence, the solution of the Euler seven-bridge problem is possi-
ble. In solving the seven-bridge problem, Euler did much more than merely
solve the famous puzzle. He described the existence of certain fundamental
properties of geometrical figures in no way dependent on, or related to,
shape or size. These properties are functions only of the general position
of the vertices and edges of a figure. The problem of seven bridges is a
representative of a class of problems, some dating back to antiquity. They
demonstrate the difficulties of mentally grasping the real geometric prop-
erties of all but the simplest figures. For example, the historic star symbol,
known from the Hindus to the Pythagorean, drawn in Figure 5.7 (a) can
be transversed with a single pencil stroke as AGHCIJEFGDHIBJF A.

Euler’s solution of the seven-bridge problem explained why the graph in
Figure 5.7 (b) cannot be traversed with a single pencil stroke, for there are
5 vertices, 4 of which are odd degrees, and hence, two journeys are required
to transverse the graph — a single journey will not suffice.

The pentagon graph as shown in Figure 5.8 is far more complicated
in appearance, but can be transversed with a single stroke. Starting
at the vertex A, the journey would successively pass through vertices
ABCDEFGBHIDJFAGHCIJEA.

In general, the matrix notation a;; is often used in graph theory to de-
note the edges from the ith vertex to the jth vertex and a;; to denote the
number of edges from the jth vertex to the ith vertex. Sometimes, the edges
in a graph represent connections that only operate in one direction so that

A

D C

Fig. 5.8 A pentagon graph.



Euler’s Formula for Polyhedra, Topology and Graph Theory 167

arrows are used to indicate these directions. A graph of this type is called a
directed graph (or digraph for short). It is convenient to store a large graph
in a computer in the matrix form and then use the modern computer pro-
gram, MATLAB to perform matrix computations. So, the matrix algebra,
first discovered by Arthur Cayley in 1858, has become an effective tool to
study the graph theory as well as the network theory. More remarkable is
that, sixty seven years after Cayley’s ingenious discovery, Werner Heisen-
berg (1901-1961) in 1925 recognized in the algebra of matrices exactly the
method he needed for his revolutionary work in quantum mechanics.
An adjacency matriz A = [a;;] of a graph G is defined by

r, if vertices i and j are joined by r edge,
Q5 =
0, otherwise.

The adjacency matrix A of the graph G in Figure 5.9 is

[ a1n aiz a3 ang | [0 2 0 1 ]
ag1 Qg2 0423 A24 2 01 1
A= =
as1 az2 a3z Q34 01 0 1
L @41 Q42 Q43 Q44 ] L 1 1 1 0 ]

An adjacency matriz A = [a;;] of a digraph G in which there is exactly

1

2 3

Fig. 5.9 Graph G of four vertices and six edges.
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Fig. 5.10 (a) Diagraph G of a tournament of five players 1 to 5, (b) Its adjacency
matrix A.

one directed edge between every pair of vertices is defined by

1, if vertices ¢ and j are joined by an arrow from ¢ to j,
aij =
0, otherwise.

The adjacency matrix A of the digraph G in Figure 5.10 (a) is given in
Figure 5.10 (b).

The incidence matriz A = [amy] associated with a digraph G consisting
of n vertices connected by m edges is an m X n matrix whose rows are
indexed by the edges and whose columns are indexed by the vertices. If
edge r starts at vertex ¢ and ends at vertex j, then the rth row of the
incidence matrix will have +1 in its (r,¢) entry and —1 in its (r,j) entry;
all other entries in the row are zero. So, +1 corresponds to the outgoing
vertex at which the edge starts and —1 the incoming vertex at which it
ends. The incidence matrix A of a diagraph G in Figure 5.11 (a) consisting
of 5 edges joined at 4 different vertices is of size 5 x 4 is given by in Figure
5.11 (b)

Hence, the first row of the incidence matrix A says that the first edge
starts at vertex 1 and ends at vertex 2. Similarly, the second row states
that the second edge goes from vertex 1 to vertex 3 and so on. Clearly, it is
easy to construct an incidence matrix from a given digraph, and conversely,
it is easy to construct any digraph from its given incidence matrix. It is
noted that the incidence matrix provides important geometric and quanti-
tative information of the given digraph. In particular, its kernel and coker-
nel have topological significance. For example, the kernel of the incidence
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1
1 -1 00
1 0 -10
A=]00-]
0 1 0 -1
0 0 1 -1]
(b)

Fig. 5.11 (a) A simple digraph, (b) Its incidence matrix A.

matrix A associated with the digraph in Figure 5.11 is spanned by the sin-
gle vector u = (1,1,1,1)7 and represents the fact that sum of the elements
of any given row of the matrix A is zero. This observation is true in general
for connected graphs. More precisely, if A is the incidence matrix for a con-
nected digraph, then kerA is one-dimensional with basis u = (1,1,---,1)7.
Moreover, if A is the incidence matrix for a connected digraph with n ver-
tices, then the rank of A is n — 1.

In modern terminology, it is important to mention that an Eulerian
path is a particular case of general class of graphs, known as the complete
graphs. A complete graph with n (> 1) vertices is a simple graph in which
every vertex is joined to every other vertex, and it is denoted by K,. In
other words, a graph of n vertices is complete if it has exactly n(n — 1)/2
edges. The graphs of Ky, K3, K4 and K5 are drawn in Figure 5.12. Since
there is exactly one edge between pair of nodes in a complete graph, the
graph K, has n vertices of degree (n—1). Using arguments similar to those

® °
K, K; Ky

Fig. 5.12 The complete graphs Ky, n =2, 3, 4 and 5.



170 The Legacy of Leonhard Fuler — A Tricentennial Tribute

A
®

Fig. 5.13 A planar graph.

of Euler, Louis Poinsot (1777-1859) showed that an Eulerian path in K, is
impossible when n = 4, 6, 8, - - - because in these cases there are more than
two vertices with odd degree. He also discovered an ingenious method for
construction an Eulerian path in K, for odd n.

On the other hand, a graph is called connected if, for any two distinct
vertices, there is an edge joining them together. Obviously, a connected
graph does not contain isolated vertices. In other words, each of its vertices
has at least one edge. There is another kind of graph which is abundantly
utilized in designing electrical circuits so that no wires cross. Such a graph,
with edges crossing or meeting except at vertices is known as planar graph
or equivalently, about maps on the plane. The graphs Ko, K3 and Ky
shown in Figure 5.12 are planar, but the graph K5 and all succeeding ones
are not planar. Another planar graph with five vertices, seven edges and
four faces is shown in Figure 5.13.

In 1813, Cauchy’s generalization of the Euler formula (5.1.1) is a theo-
rem about planar graphs. He considered the result of allowing extra vertices
and edges inside a polyhedron so that it is, in fact, decomposed into number
p of separate polyhedra and obtained the formula

V-E+F=p+1 (5.2.2)
which reduces to the Euler formula (5.1.1) for polyhedra when p = 1, and
to (5.1.6) for networks when p = 0.

However, the most common practical example of a graph which cannot
be represented by a planar graph is the energy delivery system graph con-
sisting of three services, water (W), gas (G), and electricity (E), to three
houses A, B, and C as shown in Figure 5.14 (a). This graph has no plane
drawing.
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A

(a) (b)

Fig. 5.14 (a) Bipartite graph K3 3 and (b) Complete graph Ks.

The graph in Figure 5.14 (a) is a good example of another graph which
is known as bipartite graph in which one set of vertices may be connected to
another set of vertices, but not to vertices in the same set. If every vertex
in one set is connected by one edge to every vertex in the other set, then
it is called a complete bipartite graph. If two sets have m and n vertices
respectively and each vertex in the first set is joined to each vertex in the
second set so that there are exactly mn edges, then the notation K,,
is used to denote the complete bipartite graph. For example, the graphs
K2, Ko and K5 3 are drawn in Figure 5.15 with circular and square dots
representing the two sets of vertices. Obviously, these graphs are planar as
the plane drawing of them have no crossings at all. However, the graphs
K33 and K5 in Figure 5.14 (a) and 5.14 (b) are important examples of
non-planar graphs.

Ki K> K23

Fig. 5.15 Complete planar bipartite graphs.
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In general, there is a relation between the numbers of vertices, edges and
faces of a planar graph. In a plane drawing of a graph, the plane is divided
into regions called faces and one face always represents the region external
to the graph. The planar graph in Figure 5.13 has four faces P, @, R
and the external faces, S. Evidently, Euler’s formula (5.1.1) holds for any
planar graph. In 1930, the Polish mathematician Kazimierz Kuratowski
(1896-1980) proved a remarkable theorem that every non-planar graph has
a subgraph homeomorphic to either K5 and K3 3.

It turns out that the structure of a graph is related to that of one-
dimensional complex in topology. Some geometrical figure F' consisting
of distinct vertices and curves (either arcs of circles or line segments) is
called a geometric realization of a graph G, if there exists a one-to-one
correspondence between the vertices of F' and those of G, and also between
the curves of F' and edges of G so that the corresponding curves and edges
connect the corresponding vertices. So, there is a fundamental question
whether any graph G can be realized in Euclidean space. If it can, then does
there exist a value n such that any graph admits realization in Euclidean
space of dimension n? What is then the minimum value of n? There is a
well-known theorem in topology which provides answers to these questions.
This theorem states that every finite graph G can be realized in three-
dimensional Euclidean space. However, it is proved in topology that graphs
K5 and K33 do not admit realization on the plane.

This section 5.2 is essentially devoted to a brief introduction to the
theory of graphs and networks with many examples from the real world.
Included are some of the basic properties of graphs and networks for some
understanding of the macroscopic behavior of real physical systems. We
now close this section by stating some important and modern applications
of graph theory or network problems from transportation to telecommu-
nications. Graphs or networks are effectively used as powerful tools in
industrial, electrical and civil engineering, communication networks in the
planning of business and industry. Graph theory and combinatorics can
be used to understand the changes that occur in many large and complex
scientific, technical and medical systems. With the advent of fast large
computers, large scale complex optimization problems can be modeled in
terms of graphs or networks and then solved by algorithms available in
graph theory. Many large and more complex combinatorial problems deal-
ing with the possible arrangements of situations of various different kinds,
and computing the number and properties of such arrangements can be
formulated in terms of networks.



Euler’s Formula for Polyhedra, Topology and Graph Theory 173

Historically, the 1736 marked the Fuler’s original discovery of the so-
lution of the Konigsberg Seven Bridge problem in terms of graphs which
represented the start of the graph theory. It was a remarkable coincidence
that a Hungarian mathematician, Dénes Konig (1884-1944) published the
first comprehensive treatise on graph theory, Theorie der endlichen und un-
endlichen Graphen in 1936 which marked the 200th anniversary of Euler’s
discovery. It was Euler who first laid the foundation of graph theory which
had become a major branch of mathematics in its own right since 1936.
Indeed, graph theory is now considered one of the most active and useful
research areas in modern pure and applied mathematics.






Chapter 6

Euler’s Contributions to Calculus and
Analysis

“Read Euler, read Euler, he is the master of us all.”

P. S. Laplace

“The study of Euler’s work will remain the best school for dif-
ferent fields of mathematics and nothing else can replace it.”

Carl Friedrich Gauss

“Kuler was the most prolific mathematician in history and the
major figure in the development of analysis in the eighteenth
century.”

Victor Katz

6.1 Introduction

Although Newton and Leibniz were universally recognized for the indepen-
dent discovery of calculus, it was the Bernoulli brothers, Jakob (1654-1705)
and Johann (1667-1748) who did considerable significant work to build the
subject of calculus, in general and infinite series, in particular. Based on
the greatest achievement of Newton, Leibniz and the Bernoulli brothers,
Euler published his first two-volume masterpiece treatise on mathematical
analysis entitled, Introductio in analysin infinitorum (Introduction to the
analysis of the infinite) in 1748. This work is essentially concerned with the
infinite processess of analysis: the expansion of functions in infinite series,
infinite products, continued fractions, and summation of a wide variety of
algebraic, trigonometric and hyperbolic functions. He established the idea
of a function as the most fundamental concept in mathematical analysis. He

175



176 The Legacy of Leonhard Euler — A Tricentennial Tribute

defined it very broadly as: “A function of a variable quantity is an analyt-
ical expression composed in whatever way of that variable quantity and of
numbers and constant quantities.” He also introduced a function of several
variables and proved some of its basic properties. Even though the concepts
of limit and continuity were not rigorously established until the nineteenth
century, he distinguished between continuous and discontinuous functions,
between single-valued and multiple-valued functions, between explicit and
implicit functions, and between algebraic and transcendental functions. He
developed a fairly complete but non-rigorous theory of differentiation and
integration in his Institutiones Calculi Differentials (Foundations of Differ-
ential Calculus) published in 1755. He introduced the definition of deriva-
tive as the “ratio of two vanishing increments,” and then obtained the value
of (%) when dx is very small.
Euler first introduced the expansion of function in the form
_ df 2
f(z+62) = f(z) + (5) 5x+0((5x) ) (6.1.1)
Or, equivalently,
df  f(a+62) - f(a)
dr ox
Replacing the derivative by the difference is universally known as the Euler

+0(5z). (6.1.2)

method to numerically solve ordinary differential equations. It was the
above relation (6.1.2) that provided Euler his celebrated entrée into the
world of numerical analysis.

Subsequently, he published a comprehensive three-volume textbook
on integral calculus entitled Institutiones Calculi Integralis in 1768-1770.
These volumes not only represented a comprehensive analytical treatment
of integral calculus and analysis of the eighteenth century, but also con-
tained a large number of his own discoveries. He also developed the tech-
niques of integration in many different directions including the explicit eval-
uation of integrals of rational functions with or without trigonometric func-
tions as factors. He also first discovered the so-called Eulerian integrals of
the first and the second kind which are also known as the beta and the
gamma functions, respectively. In addition, Euler made some major contri-
butions to elliptic integrals as natural generalizations of the inverse circular
functions. He used elliptic integrals to compute arclengths of the ellipse, hy-
perbola and lemniscate. In general, elliptic integrals play a significant role
in a wide variety of applications to problems in geometry, number theory,
and physics. The study of the motion of a simple pendulum also requires
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the use of elliptic integrals. The legacy of Euler’s work in elliptic integrals
led to the development of the theory of elliptic functions and elliptic curves.

6.2 Euler’s Work on Calculus

Euler believed that functions can be represented by infinite series and in-
finite products, and introduced new notations, such as, e, w, log, z, cosz,
sinz, and f(x) for a function of x. In his Introductio, Euler defined the
exponential and logarithmic functions as limits:

e = lim (1+ f)n (6.2.1)
n—o0 n
Inz =log,z= lim n (x% - 1) . (6.2.2)

Evidently, it follows from (6.2.1) that e” has the infinite series expansion

2 n

x __ T r

When z = 1, (6.2.3) gives the Euler number e which is a transcendental
number of value 2.71828183. Putting = £1 in (6.2.1) leads to results for
e and 1 in the forms

e= lim (1 + l) L. (1 - l) . (6.2.4)
n— 00 n e n—00 n
On the other hand, the function defined by equation (6.2.2) is known as
the natural (or Napierian) logarithm of x. It is often written as Inz to
indicate that the logarithm is taken to the natural base of e, that is, Inx =
log, z. Clearly, the above two equations (6.2.1) and (6.2.2) define two most
important functions in mathematics: if y = €%, then x = In y and vice-versa.
So, there is a simple inverse relationship between y and .
Both Newton and Nicholas Mercator (1620-1687) independently ex-
panded f(z) = (1 +z)~! in the form

A+2)t=1—az+a2?—2>+- .. (6.2.5)
and then integrated term-by-term to obtain

1 1
log(1+x) =2 — §x2+§x3—--- . (6.2.6)

This is a much more convenient means of calculating logarithms which
were the artificial numbers of John Napier, the area under the rectangular
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hyperbola and sum of an infinite series. At the beginning of the seven-
teenth century, Napier used Fermat’s approach to quadrature (or integra-
tion) to calculate the area under the hyperbola y = = !, and showed that
the arithematic-geometric relationship is the characteristic property of the
logarithms. While passing over many other individual contributions, Eu-
ler unified several approaches to logarithms which appeared in his great
textbook on algebra Complete Introduction to Algebra of 1770. He also
successfully clarified the controversy between Leibniz and Bernoulli regard-
ing the logarithms of negative and imaginary numbers of introducing the
multivaluedness of the logarithms.

Euler first recognized an amazing connection between logarithms and
harmonic series which led his celebrated discovery of the Euler universal
constant ~y as follows. He substituted z = < in (6.2.6) to obtain

1 1 1 1
h(l+-|=———+-——---. 6.2.7
. < * n) n  2n? + 3n3 ( )
Or, equivalently,
1 1+n 1 1
o S S 2.
n o\ n > 2n?  3n3 * (6.2.8)

~

For sufficiently large n (n — oo

(n
%:m(i”)ﬂ)(%). (6.2.9)

Puttingn =1, 2, 3, --- in (6.2.8) gives

1 _ 1 1
1 _ 3 1 1
3= In (5) tosr —3m to
1 4 1 1
3= In (5) to3 —3m to

— (=) e -

n

1

n
Euler added these results column-wise to obtain the harmonic series and
the sum of logarithms plus a numerical constant so that

"1
ZE ~ log(n +1) 4 0.57721567 - - - . (6.2.10)
k=1
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In the limit as n — oo, the Euler universal constant « is now defined by

(6.2.11)

"1
v = lim 7, = lim [ E—ln(l—i—n)

n— oo n—o0
k=1

This is equivalent to

e
V:nlirr;o ZE —Inn—-In(l+n)+Inn
Lk=1
= lim zn:l—ln(n) — lim In 1—|—l
B n— 00 k n—oo n
Lk=1
1
= lim — —In(n)| . 6.2.12
Jim kZ:l 7~ In( )1 ( )
It follows from (6.2.6) that
1 3 5
In (i—x> =ln(l+z)-In(l—2)=2 (x—k%—!—%—k---) . (6.2.13)

Substituting = 1 in series for In(1 — ) shows the divergence of har-
monic series

1 1 1 1

4 5+g+g+z+ o =I-1)=In(0) = oco. (6.2.14)
When = = £, (6.2.13) gives
2 =2 <1+i+i+---) — 0.69314. (6.2.15)
3 81 1215

In his Introductio, Fuler first introduced the trigonometric and hyper-
bolic functions and developed their analytic treatment in a remarkable way:.
He also introduced the mathematical symbol ¢ for /—1 so that any complex
number z can be written as x + iy, where x and y are real numbers. He
then replaced z by iz or —iz in (6.2.3) to obtain

2 4 3 5
x x x x
exp(+iz) = (1— -+ —) +i (m— g—i—a —) . (6.2.16ab)
Thus, two bracketed expressions in (6.2.16ab) represent the infinite power
series for the trigonometric functions cosx and sinx, respectively, so that
(6.2.16ab) can be written as

e” =cosz+isinez and e ¥ =cosz —isinz. (6.2.17ab)

Consequently, these results lead to the most beautiful and remarkable Euler
formulas in mathematics:

cosT = % (e +e ™) and sinz= 2% (e —e™7). (6.2.18ab)
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He also established the famous formulas
(cosx +isinz)" = cosnz + isinnx (6.2.19)

and generalized them for all real values of n. These formulas were known to
Abraham de Moivre (1667-1754) and are universally known as de Moivre’s
formulas, but he never stated them explicitly. Evidently, they follow im-
mediately from the equality

[exp(ix)]" = exp(inx). (6.2.20)

Euler provided the formulation of the addition theorem for cosine and sine
functions using the formula

(cosx +isinx) (cosy + isiny) = cos(x + y) + isin(z + y). (6.2.21)

Equating the real and imaginary parts of (6.2.21) gives the familiar addition
theorems for the cosine and sine functions.

In 1746, Euler gave a pleasant surprise to the entire mathematical com-
munity by showing an imaginary power of an imaginary number, ¢ is a
real number. For example, i* = exp(—n/2). He later proved that there
are infinitely many values of i*. It is remarkable that Euler discovered two
elegant and most beautiful formulas in mathematics

e€™+1=0 and €™ —1=0. (6.2.22ab)

These formulas relate six most fundamental constants e, ¢, 7, 0, 1 and —1
in mathematics.

In his long and magnificent article entitled ‘Recherches sur les racines
imaginaires des equations’ published in 1749, Euler introduced a new
method of finding roots of complex numbers and then expressed the nth
roots of a complex number z = x + iy in the form

(z +iy)" = Ur |:COS (w) + isin (M)} : (6.2.23)
n n

where r = /22 + 42, § = tan~! (%), and k=0,1,2,---, (n—1).
This led him to determine a beautiful short cut for finding nth roots of
unity (z™ = 1) given by

2mik 27k 27k
wk:exp< 7” ) — cos (L) +isin(i) . k=012, ,(n—1),
n n n
(6.2.24)
where the sum wg+ w1 +ws+ -+ -+ wy_1 = 0. Geometrically, the nth roots

of unity represent the vertices of a regular polygon of n sides inscribed in

the unit circle (|z| = r = 1) and one of those vertices is at z = 1.
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In his 1755 Institutiones Calculi differentialis, Euler considered a general
polynomial function

y=a" —Az" ' + Ba" 2 - Ca" 3 4. (6.2.25)

for real values of x, and proved that the values of z which make the function
y(z) a maximum or minimum are the roots of

dy _

o= ne" ' — An—1)2" %+ =0. (6.2.26)

He also investigated that the equation F'(z) = 0 of degree n will have
n real roots and the derived equation F’(z) = 0 of degree (n — 1) will have
(n—1) real roots. He proved that between two consecutive real roots of the
equation F(x) = 0, there is always a real root of the equation F'(z) = 0.
In his study of polynomial equations, Euler made no reference of Michel
Rolle’s (1652-1719) work on similar equations. Whether or not he had read
Rolle’s work is not known. In 1690, Rolle published his famous Traité d’
algebre (Treatise of algebra) in which he described his method of cascades
for finding roots of polynomial equations. Originated as an unexpected
theorem in algebra, Rolle made the first statement of his great theorem
in 1690, known as Rolle’s theorem in real analysis, which can be stated
in modern notations as follows. If f(x) is a continuous function in the
closed interval [a, b] and differentiable in the open interval (a, b), then there
exists a point x = ¢ in (a,b) such that f'(c) = 0. At that time, the
Taylor series had not yet been discovered and calculus was its very early
stage of development. Indeed, Rolle’s theorem or its equivalent form was
published several times during the eighteenth century because it has been
regarded as one of the fundamental theorems in real analysis. However,
some mathematics historians claimed that a version Rolle’s theorem was
first stated by the Indian mathematician, Bhaskara, in the twelfth century
without a formal proof. A proof of the theorem had to wait until centuries
later when Rolle in 1691 adopted the methods of the differential calculus.
Subsequently, the proof of Rolle’s theorem followed from the mean value
theorem (or Taylor theorem) in differential calculus:

= f'(c), a<c<b. (6.2.27)

—a

Geometrically, this means that the secants have the same slope as the tan-
gent for some point ¢ in (a,b) of the function y = f(x).
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On the other hand, Rolle’s theorem can also be derived from the mean
value theorem for integrals

b
/ flz)dx = (b—a)f(c), a<c<b (6.2.28)

when f(z) is replaced by f'(x) with f(b) = f(a).

Euler derived many formulas for the derivatives of the rational, alge-
braic, trigonometric and transcendental functions. Based on an article
entitled Euler’s Mathematical Notebooks by Knobloch published in the
2007 English edition, of Euler and Modern Science, it may be appropri-
ate to mention Euler’s major contributions to a large variety of indefinite
and definite integrals involving algebraic rational functions, trigonometric
functions and exponential functions. Euler’s listed an incredible number of
integrals with or without evaluation. These notebooks also provide a vivid
idea of Euler’s numerous research activity and research creativity of many
diverse areas including astronomy, geography, mechanics, physics, pure and
applied mathematics.

Euler also defined a homogeneous function u(z,y) of degree n by the
condition

u(tz, ty) = t"u(z, y) (6.2.29)
for any real t. He then proved that
x % +y Z—Z = nu(z,y). (6.2.30)

This is known as the Fuler theorem for the homogeneous function u(z,y)
of degree n.
The condition (6.2.29) is equivalent to

u(z,y) = 2" g (%) or y"h (g) . (6.2.31)

We differentiate (6.2.31) partially with respect to  and y and then make
simple algebraic manipulation to obtain the Euler theorem (6.2.30).

In general, all homogeneous function wu (1,2, ,Z,,) of degree n in
the variables x1, xo, - - -, T, are characterized by the condition
u(tey, tre, - toy) =t" w (21,22, ,Tm) (6.2.32)

which is true for real values of t. If we set t = mi, we have

Tm Tm Tom

W (@1, T2y ) = 2 <ﬂﬂ ,xm1,1> (6.2.33)
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which is equivalent to

ot xm*) (6.2.34)

u(x1, @2, Tm) =0 0| —, —, -,
(orn ) =0 (2,22 B
where v is a function of (m — 1) variables which satisfies the above condition
of homogenity. Thus, (6.2.34) represents the totality of homogeneous func-
tion of degree n. A proof similar to that of homogeneous function of two
variables can be adopted to prove the Euler theorem for the homogeneous

function u of degree n in m variables in the form
ri — +x9 — + -+ 2, —— = nu. (6.2.35)
x

Although Newton first introduced polynomial equations f(x,y) = 0 in
x and y to describe geometrical properties of plane curves, he made no
attempt to publish partial derivatives of f(x,y) with respect to x and y.
James Bernoulli first used partial derivatives in his work on isoperimet-
ric problems. On the other hand, Nicholas Bernoulli (1687-1759) utilized
partial derivatives for finding orthogonal trajectories of plane curves which
was published in Acta Eruditorum in 1720. Indeed, Euler, Clairaut and
d’Alembert developed the theory of partial derivatives to create the calcu-
lus of functions of several independent variables and the theory of partial
differential equations. Clairaut discovered the total differential du or df
from u = f(z,y) in terms of partial derivatives in the form

=df = _f fdy, (6.2.36)

8
and then derived the condition % = %{Z for the exact differential of the
expression M (z,y)dr + N (z, y)dy. In general, if u = f(x1, 22, -+ ,2n), the
total differential df is

Of 4p. + 91

df—— ——dxs + -- af

8 o 8xn

Multiple integrals appeared in the first part of the eighteenth century
in the work of Euler who formulated the attraction of an elliptical lamina
of thickness dc on a point directly over the center and distance ¢ by means

of the double integral
cdr dy
(9¢) // .5/ (6.2.38)
(2 + 2% +y?)

taken over the ellipse (x2/a2) + (y2/b2) = 1. He also evaluated this double
integral in 1738 by repeated integration with respect to y and then used

2L dz,,. (6.2.37)
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infinite series of the resulting integrand as a function of z. Subsequently,
Euler developed a fairly general method of evaluation of a double integral
over a bounded domain by repeated integration.

In a series of papers, Euler introduced partial derivatives of functions
u= f(x,y,2,---) of two or more independent variables. In one of his 1734
papers, he proved, for u = f(z,y), that

u  O%u
0xdy  Oydx’

In his other papers written from 1748 to 1766, Euler treated change of
variables, inversion of partial derivatives, and functional determinants. Al-
most simultaneously, d’Alembert generalized the calculus of partial deriva-
tives in his works of 1744 and 1745 on analytical dynamics. The very suc-
cess of the geometrical approach to calculus led to the widespread shift of
emphasis on the greater power and versatility of calculus. The most strik-
ing feature of the eighteenth century mathematics was to build the logical
foundations of the calculus by creating a new and vast subject of mathe-
matical analysis as used by Euler and d’Alembert. It is a delight to quote
d’Alembert’s views in 1743 as follows: “Up to the present... more concern

(6.2.39)

has been given to enlarging the building than to illuminating the entrance,
to raising it higher than to giving proper strength to the foundations.”

6.3 Euler and Elliptic Integrals

FEuler’s major interest in elliptic integrals and elliptic functions goes back to
his early years with Johann Bernoulli. While he was at the Berlin Academy,
on December 23, 1751, Euler received two-volume work of C. G. Fagnano
entitled Produzioni Matematiche, published in 1750 for his formal review.
This work contained the formula for the duplication of the arclength of
2 = 42 cos 26 and whose
rectangular coordinate equation is (2% + y2)2 = a* (2? — y?). Euler was
tremendously inspired by this work and helped create a new area of alge-
braic functions and their duplication formula. In fact, the name elliptic
integral originated from the problem of rectification of elliptic arcs. C. G.
Jacobi announced the date of December 23, 1751 as the date of birth of ellip-
tic integrals (and of elliptic functions). Indeed, Fagnano discovered a simple
and remarkable solution of the rectification of the lemniscate, and he was so
proud of his achievement that he left instructions to inscribe a lemniscate
on his grave. In 1716, Fagnano proved that two arcs of any given ellipse

lemniscate whose polar coordinate equation is r
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may be determined in an infinite number of ways so that their difference is
equal to a segment of a given straight line. Being impressed by the original
work of Fagnano and others about the importance and richness of the the-
ory of elliptic integrals, Fuler began his systematic study of elliptic integrals
with their geometrical and physical applications. His great paper of 1757
in which he proved the famous addition theorem for elliptic integrals which
established a new major subject of independent interest in mathematical
analysis. Indeed, among his landmark discoveries are celebrated addition
and multiplication theorems for elliptic integrals and their new applica-
tions. Euler’s significant achievement received a praise from André Weil’s
(1984) statement: “With characteristic generosity Euler never ceased to
acknowledge his indebtedness to Fagnano; but surely none but Euler would
have seen in Fagnano’s isolated result the germ of a new branch of analy-
sis. His first contribution was to extend Fagnano’s duplication formula for
the lemniscate to a general multiplication formula ....” Jean d’Alembert in
Paris made some cordial mathematical correspondence with Euler in Berlin
on elliptic integrals and the vibrating string problem governed by the wave
equation over many years, and then d’Alembert made some important con-
tributions to certain transformations of elliptic integrals with applications.
Although there was a strong professional disagreement between d’Alembert
and Fuler in 1757 on mathematical ideas and problems, especially, on the
vibrating string problem, Euler praised d’Alembert’s contributions to inte-
gral calculus and elliptic integrals. All these early works concerned with
the evaluation of certain integrals involved in special problems with a very
little interest in the systematic investigation of general properties of these
integrals may be regarded as the first new epoch in the history of develop-
ment of the theory of elliptic functions. However, Euler’s major work on
elliptic functions was solely motivated by applications which began with
his study of elastica, a curve described by a thin elastic rod compressed at
the ends which was discovered by Bernoulli brothers.

In 1768, J. L. Lagrange solved some Euler’s problems of elliptic integrals
by elegant methods. In 1771, J. Landen (1719-1790) became very successful
in finding that the hyperbolas can, in general, be rectified by means two
ellipses. In this epoch, elliptic integrals were investigated systematically by
A. M. Legendre and C. G. Jacobi who used rapidly convergent elliptic theta
functions and discovered the Jacobian sn and c¢n functions w = sn z and
w = cn z as new generalizations of trigonometric sine and cosine functions.

In order to understand Euler’s famous work on addition and multipli-
cation theorems for elliptic integrals, it may be appropriate to consider an
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elementary problem, that is, to find a function z = h(z,y) such that the
following integral formula

/;f(t)dt—l—/ayf(t)dt:/:f(t)dt 63.1)

holds for a given function f and constant a.
For example, if a = 1, f(t) =t~ and

L(z) = /gﬂ % dt =Inz, (6.3.2)
1
then
L(z) + L(y) = L(z) = L(xy), (6.3.3)

where z = h(z,y) = zy is the product of two real numbers = and y.
Similarly, if

® dt -1
s(x) = =sin" " x, 6.3.4
0= [ 7= (63.4)
and
T Y z
Y T S
0 1—¢2 0 1—¢2 0 1—1¢2
or
sin~!'z +sin"ly =sin"'z (6.3.6)

hold, we substitute = sin A and y = sin B in (6.3.6) to obtain

2 = sin(A+B) = sin A cos B+cos Asin B = /1 — y2+y\/1 — 22 = h(z,y).

(6.3.7)
Conversely, if 2 = 21/1 — y2 +y/1 — 22, then differentiating partially with
respect to = and y gives

\/1—x2%:\/1—y2 % (6.3.8)

It follows from (6.3.6) that

A+ B =sin"!z=sin"" (sin Acos B + cos Asin B) . (6.3.9)
Or
sin(A + B) = sin A cos B + cos Asin B. (6.3.10)

This is the familiar addition theorem for the sine function.
In order to obtain the 1781 addition theorem of Fagnano, we consider

the equation of lemniscate 72 = a?cos20 which is r*? = cos 26, where
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r* = (r/a). Dropping the asterisk, the equation of the lemniscate becomes
r? = cos 26.
Thus, rdr = — sin 20df and

2 2 )
sin” 2
(%) =7’ 4 <%) = cos 20 + 5(31(1)18 2; = sec26.

Consequently,

de
dS = Vsec20 df) = ———.
(1—2sin*0)?
Substituting ¢ = tan 6, dt = (1 + %) df gives dS = (1 — )2 dt.
The arclength of the lemniscate curve is
Toodt
S(r) = / 6.3.11
) 0o V1—t1 ( )
between the origin and a point on the curve. Fagnano obtained the dupli-
cation formula

oryT 7
S(r)=5R), R=-—03 (6.3.12)
This gives a prescription of how to double the lemniscate using a compass
and ruler.
Inspired by this work of Fagnano, Euler discovered the addition theorem

for the elliptic integrals. If

/z dt +/y dt _/Z dt 6313
o VIt Jo VI—#2  Jo VI—tF o
then
_ 4 _ 4
B a4 T MU (6.3.14)

1+ a2y?
is called the celebrated Fuler addition theorem, where z = h(z,y) is an
algebraic symmetric function. When © = y = r, (6.3.14) reduces to the
Fagnano duplication formula (6.3.12).

It is interesting to note that z satisfies the quadratic equation

22 (1+ 2?y?) — 2za\/1 — y* + (x2 -y%) =0. (6.3.15)
Using (6.3.13) and (6.3.15), Euler proved that if

/y dt —n/$ dt (6.3.16)
0o V1—tt 0o V1—tt o
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holds, then y is an algebraic function of . This result is called the Fuler
multiplication theorem for the elliptic integral S(z) given by (6.3.11). From
this result the complete integral of equation (6.3.16) can be obtained.

From these results, Euler was able to obtain what is now known as the
addition theorem for elliptic integral of the first kind of the form

Toodt
/ (6.3.17)
0 R(t)
where
Rit)=1+mt*+nt (6.3.18)
If

= odt

| vt | = v

holds, then z = h(x,y) given by

_zy/R(y) +y/R(z)
z= (6.3.20)
1—na2y?
is the celebrated Euler addition theorem. When m = —1 and n = 0, (6.3.19)
and (6.3.20) reduce to (6.3.5) and (6.3.7) respectively. On the other hand,
when m = 0 and n = —1, (6.3.19) and (6.3.20) reduce to (6.3.13) and
(6.3.14) respectively.
It is noted that

R) 2 = ;y?)? [(1+na%y?) VR@) VRE)

or (1 —-na?

(6.3.19)

+ 2nzy (y +

> D2 v +a ) +mmy] . (6.3.21)

When n = 0 and m = —1, this reduces to

vV R(z) % =+ R(z) VR(y) — zy, R(z) = (1 —2?). (6.3.22)

This is in complete agreement with the partial derivatives of (6.3.7) with
respect to = and y and then with (6.3.8).
Euler was also interested in finding the complete integral of

mdr  ndy
VIi—azt Tyt

where (m/n) is rational and this result represents the problem of finding

(6.3.23)

two arcs of a lemniscate that have this ratio to each other. He was also
convinced that (6.3.23) has a complete integral which can be represented
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by a certain algebraic equation in  and y when (m/n) is rational. In
1753, Euler discovered many addition formulas for elliptic integrals which
are usually referred to Fuler’s addition theorems.

It is more remarkable to mention here the discovery of Gauss’ lemniscate
functions in 1796 when he was only nineteen years old. He was interested
in the inverse function r = r(S) of the elliptic integral (6.3.11). A simple
differentiation of (6.3.11) gives

s 1

dr T
When 25 > 0, the function S(r) in —1 < r < 1 has an inverse function
which was denoted by r = s{S, —w < S < w and is called the Gauss
lemniscate sine function. In particular, the quantity

Uoa
w:/O Nigsr (6.3.25)

is simply the half arclength of the lemniscate curve. Gauss also introduced
the lemniscate cosine function by the relation

—l<r<l1. (6.3.24)

clS=sl(w—-29), (6.3.26)
and then proved the famous identity
s02S + cl?S + s?Scl?S = 1. (6.3.27)

This is the generalization of the familiar trigonometric identity sin®s +
cos?s =1, where = r = sin s defined by (6.3.4), and

1
dt T T
w = = —, and coss=sin (— — s) . 6.3.28ab
| +=-3 . (6.3.28aD)
Although Gauss introduced the lemniscate functions r = s£.S and r =

ct S for real values of S, but the most remarkable fact is that he extended
these functions to complex values of S by writing (6.3.11) formally as

dt " o du
. 6.3.29
/0 V1—tt Z/o V1—ut ( )
so that S(ir) = ¢ S(r). This led Gauss to the definition
sl (18)=1isl(S) forall S € R. (6.3.30)

With the aid of this definition and the addition theorem, he then defined
s€(S) for complex numbers S and derived two fundamental periodicity prop-
erties for all complex S as

sl(S+4w)=sl(S) and sl(S+ 4diw) = sl(S). (6.3.31)
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Unlike the trigonometric sine and cosine functions with a single real
period 27, the Gauss lemniscate functions are doubly periodic meromorphic
functions with one real period 4w and another purely imaginary period 4iw.
These functions are called the Gauss elliptic functions.

In 1757, Euler studied the deflexion y(z) of a thin elastic vertical column
of uniform cross-section and length ¢ when a constant vertical compressive
force (or load) P is applied to its top. The bending moment M (x) at any
point at a point x along the column is proportional to the curvature s of

the elastic column so that
1

¥y
(1+ y/2)3/ 2
provided the slope of the deflexion g’ is small, where E is a constant Young’s
modulus of elasticity of the column and I is the moment of inertia of the
cross-section of the column and the product ET is called the flezural rigidity
of the column. The differential equation of the deflexion y(x) is

M(z) = EIx = EI ~ EIy", (6.3.32)

d?y
El — = —Py. 6.3.33
Tz y ( )
Noting % = tany, % = sint, 92 = costp and ds? = dx? + dy?, it follows

that Z—i’% = 4 (tany) = sec?v) - % = sec - %. Consequently, the Euler
differential equation (6.3.32) becomes

dip
EI — = —Py. 6.3.34
T y ( )
Differentiating this equation with respect to s and using % = sin gives
d? P
d—;,f = —a®sin, a’ = T (6.3.35)
Integrating this equation once yields

1 (dyp\*

3 <d—‘:) =a*cosy + C, (6.3.36)
where C' is an integrating constant. At the upper end of the column, the
bending moment is zero so that ¢ = « and % =0 and C = —a®cosa.
Thus, equation (6.3.36) reduces to

dio\ 2

<d_¢> = 2a” (costp — cosa). (6.3.37)
S
Or, equivalently,
d
ds = — v , (6.3.38)

=

V2 a(costp — cos )
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where the positive square root is not admissible because Y <. Equation
(6.3.38) represents the intrinsic equation of the curve formed by the column.
However, this equation cannot be integrated to obtain an explicit form
s = f(¥). Since dy = sint ds, equation (6.3.38) represents the deflection
of the top of the column given by

i 0
y(a) / sin¢ ldw:@ [(cosvﬁ—cosa)é
a\/— (cos) — cosa)? a o
1 2 (0%
= 1-— 2 = — sin —. 6.3.39
p ( cos )2 - sing ( )

Euler also solved the problem of a simple pendulum which consists of a
light inextensible string of length ¢ to which a particle of mass m is attached
at the lower end with the upper end fixed. In describing the motion of the
simple pendulum in a vertical circle of radius £ and arclength s = £, where
0 is the angular displacement from the vertical, the angular acceleration is

§ = . According to Newton’s second law, ms = m¢d = —mgsin 6. Thus,
the equation of motion of the pendulum is given by
d?o
== —% sinf = —w? sin 6, (6.3.40)
g is the acceleration due to gravity and w? = g/f. Integrating (6.3.40) once
gives
AN
<E) = 2w? cos + C, (6.3.41)
where C'is an integrating constant and at ¢ = 0, # = « is the initial angular
displacement and 6 = 0 so that C' = —2w? cos a. Consequently,
o> ) N
(a) = 2w” (cos§ — cosa) = 4w” | sin 5 —sin" o ). (6.3.42)

Integrating again gives

2
20 = / dt = / du , (6.3.43)
26 \/ 1 —u?)(1 — k2u?)

Sll’l ——Sl 5

which is obtained by substituting sin g = usin § with k = sin 3.
Consequently,

du

o= [ =y

(6.3.44)
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This represents the famous Jacobi elliptic integral of the first kind satisfied
by the Jacobi sn function so that

u = sn(wt, k), (6.3.45)
and
.0 0
sin 5 = k sn (wt, k), cos 3= dn (wt, k), (6.3.46)
where dn (z, k) is the Jacobi elliptic dn function. Thus, the coordinates of
the particle is given in terms of time ¢ as

(¢sind, CcosO) = [2k( sn (wt, k) dn (wt, k), ¢{2dn*(wt k) —1}].
(6.3.47)
When 6 = o, u = 1, and the periodic time T for a complete oscillation
of the pendulum is given by

_ 1 du B 71'/2 d¢ )
T_4w/o V(1 —u?)(1 — k2u?2) _4w/0 1 — k2sin® ¢ (using)

(6.3.48)
/2 1.3
:4w/ (1—|— “k2?sin® ¢+ ——sint ¢+ - )dqzﬁ
0 2.4
1 1.3
=2mw 1+ (=) B+ (=) & 3.4
Tw —|—<2) k +(2.4) kE* 4+ (6.3.49)

It follows from (6.3.48) that the periodic time T has the exact form

T = dw K (k) (6.3.50)
where K (k) is called the complete elliptic integral of the first kind defined
by the integral

T 11
:—F —,—,1;k2), 6.3.51
/ 1— k2 sin? 2 (2 2 ( )

which has been expressed in terms of the hypergeometric function
F(a,b,c;x). More details about properties of K (k) can be found in Dutta
and Debnath (1965).

Since sn (z, k) is a periodic function of z, the motion of a simple pen-
dulum is periodic with period 4w K (k).

For a compound pendulum consisting of a rigid body oscillating about
a horizontal axis rigidly connected with the body under gravity, the corre-
sponding equation of motion is given by

d?o

I i —mghsiné, (6.3.52)
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where [ is the moment of inertia of the body about the axis of rotation and
h is the distance of the center of gravity from the axis of rotation, and m
is the mass of the body.

Thus, the equation of motion (6.3.52) for a compound pendulum is

T 2
<%) % = —gsinf. (6.3.53)

Evidently, the motion of a compound pendulum is identical with that of a
simple pendulum of length £ = (I /mh) and frequency w = \/ﬁ = \/ngh.

Euler’s more work on elliptic functions and elliptic integrals is discussed
in Section 11.3 of Chapter 11. His brilliant work stimulated tremendous
interest to many greatest mathematicians including C. F. Gauss, Christof
Gudermann (1798-1852), N. H. Abel, Evaristé Galois, Karl Weierstrass, and
Bernhard Riemann. It was Abel who revolutionized the subject of ellip-
tic functions and opened the flood-gate of the nineteenth-century complex
analysis in 1827 with a simple and beautiful remark: “I propose to consider
the inverse function.” Instead of directly investigating the elliptic integral
of the form

_ / v dt
Y VI = m22)(1 + n2t2)
he used this integral as the definition of a new function y = f(z) and then
examined the properties of this function by studying the corresponding

(6.3.54)

inverse function x = f~(y) = F(y). Abel’s first major discovery was
the double periodicity of the inverse function which became known as the
elliptic functions. The more general elliptic integral is of the form

w(z) = / " Rz, /P@))da, (6.3.55)

where y? = P(z) is a polynomial of third or fourth degree with distinct
roots and R(z,y) is a rational function of = and y.

When P(z) is of degree n > 5, integral (6.3.55) is called the hyperelliptic
integral. Replacing x by a complex number z in (6.3.55), the hyperelliptic
integral is a function w(z) of a complex variable z. Abel investigated the
inverse function z of w and could not solve the problem completely because
w is often a multiple-valued function of z. However, Jacobi investigated
the particular hyperelliptic integrals

w:/ dz and w:/ zdz , (6.3.56)
0 0

VP(2) P(z)
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where P(z) is a polynomial in z of degree n > 5. Like Abel, Jacobi was not
able to determine the single-valued inverse function z of w. Subsequently,
Galois began to study of a generalization of the elliptic and hyperelliptic
integrals, but the more significant first step was initiated by Abel in his
1826 paper on more general elliptic integral of the form

w= /Z R(u, z)dz, (6.3.57)

where u and z are connected by a general algebraic equation F'(u, z) = 0 in-
stead of u? = P(z) which is a polynomial in z of degree n > 5. The integral
(6.3.57) is called an Abelian integral which is a generalization of elliptic and
hyperelliptic integrals. Although Abel could not make an extensive study
of Abelian integrals, he gave a non-rigorous proof of a fundamental theo-
rem in his Paris paper in 1826 and published its statement in 1829 Crelle’s
Journal. Abel’s key theorem is a key broad generalization of the addition
theorem for elliptic integrals. He also demonstrated that the sum of the
integrals of the form (6.3.57) can be expressed in terms of p such integrals
plus algebraic and logarithmic terms, where the number p depends only on
the equation F(x,y) = 0 and is, indeed, the genus of this equation. He
also computed the number p for a few special cases of the general equation
F(z,y) = 0. He may be considered the founder of the subject of Abelian
integrals and Abelian functions. However, he could not identify the full
significance of his analysis and results, but he loosely recognized the idea
of genus before Bernhard Riemann who was a student of Friedrich Gauss.

It was Riemann and Weierstrass who made significant contributions to
establish rigorous theory of Abelian integrals and Abelian functions. Their
successors in this field introduced transcendental functions from algebraic
functions. Riemann collected together all ideas and results of Jacobi and
Abel, which stemmed mainly from real functions, and Weierstrass’s new
approach to the theory of complex functions. Based on complex function
theory, he made a new and remarkable study of the inversion of Abelian
integrals (6.3.57). His analysis revealed that the inverse function z of w is
not only multi-valued, but often cannot be defined. As in the case of hy-
perelliptic integrals, Riemann considered sums of p Abelian integrals, and
introduced new Abelian functions of p variables which are singled-valued
and 2p-tuply periodic. He showed that the Abelian functions are new gener-
alizations of the elliptic functions as they can be expressed in terms of theta
functions in p-variables. His investigation of Abelian integrals led to results
on what kinds of functions can exist on a Riemann surface determined by
an equation F'(u,z) = 0. The profound work of Riemann was completed
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by Gustav Roch (1839-1866) in 1864 which led to the celebrated result on
functions on a Riemann surface of genus p, known as the Riemann—Roch
theorem. More precisely, this theorem determines the number of linearly
independent meromorphic functions on the surface that have at most a pre-
scribed finite set of poles. On the other hand, Weierstrass was familiar with
Abel’s work on Abelian integrals from his published papers in 1830s, and
learned Jacobi’s contributions to elliptic functions from his teacher Gud-
ermann. He also developed a totally new theory of analytic functions of
a complex variable based on the method of power series and the process
of analytic continuation which he also learned from Gudermann in 1840s.
Subsequently, he also made an extensive study of Abelian integrals and
functions in 1860s.






Chapter 7

Euler’s Contributions to the Infinite
Series and the Zeta Function

“No mathematician ever attained such a position of undisputed
leadership in all branches of mathematics, pure and applied, as
Euler did for the best part of the eighteenth century.”

André Weil

“The construction and acceptance of the theory of divergent
series is another striking example of the way in which mathe-
matics has grown. It shows, first of all, that when a concept
or technique proves to be useful even though the logic of it is
confused or even nonexistent, persistent research will uncover
a logical justification, which is truly an afterthought. It also
demonstrates how far mathematicians have come to recognize
that mathematics is man-made. The definitions of summability
are not the natural notion of continually adding more and more
terms, the notion which Cauchy merely rigorized; they are ar-
tificial. But they serve mathematical purposes, including even
the mathematical solution of physical problems; and these are
now sufficient grounds for admitting them into the domain of
legitimate mathematics.”

Morris Kline

7.1 Introduction

Before Euler, many great mathematicians including John Wallis, Isaac New-
ton, Brook Taylor, Gottfried Leibniz, Colin Maclaurin, James Gregory and
James Stirling (1692-1770) made brilliant contributions to the subject of
infinite series and infinite products. They had demonstrated the series rep-
resentations of the constants m and e and the use of infinite series and

197



198 The Legacy of Leonhard Euler — A Tricentennial Tribute

infinite products to represent functions. In 1665, Wallis obtained the infi-
nite product representation of 7 as

r_22 44 06

_— 7.1.1
2 -3 3-5 1;[ 2n—1 2n+1) ( )
In 1674, at age of 28, Leibniz used the quadrature of a circle to discover
perhaps the most remarkable slowly convergent infinite series

1 11
=1- TR (7.1.2)

§+ +

m 1 1
4 5 7

Or, equivalently,
2
et gt (7.1.3)

Using the quadrature of a hyperbola, he obtained another remarkable

series
1 1 1 1
1o82= 5 s st o2t
These series led him to believe a deeper connection between the two ba-
sic transcendental problems, the quadrature of the circle and the quadrature
of the hyperbola.
However, a few years before, James Gregory discovered the infinite series
representation of the function f(z) = tan™!

1 3 25 2T

=r——+ == — +---. 7.1.5
rT=x 3—|—5 7+ ( )

When 2 = 1, this series reduces to the Leibniz series (7.1.2).

On the other hand, in 1664, Newton developed a method of dealing with
infinite series, and in 1665, he discovered the general binomial series
nn—1) 4 > n!

—_— .- — ™ 7.1.6

ST i & (116)

m=0

(7.1.4)

z in the form

tan—

I+z)"=14+nx+

and the infinite series for sin~' z as

1 3
sinflxzx—l—gx?’—i—ExS—F--- (7.1.7)
2zt 2 4 25
(Sinflx)2:xz—i——-x——i——-—-x——i—---. (7.1.8)

The series (7.1.7) and (7.1.8) are discovered by Newton; the rigorous
method of proof of them was given by Cauchy.
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When z = 1, the series (7.1.7) reduces to the Newton numerical series

G I L AU S A B (7.1.9)
6 2 2-3-8 2:4.-5-32 2-4-6-7-128 ' o
Using the first quadrant of a circular arc with center at the origin and
radius unity, Newton derived the relation y = v/1 — 2 and
dx dx 1 3 )
PR R PR P e e 1.1
z ; — +2x —|—8x +16x—|— (7.1.10)
Integrating (7.1.10) from O to x led him to derive the series (7.1.7) for
z = sin~! 2. Using the Newton method of inversion described by Dunham
in his book (2005, pages 17-18) the series (7.1.7) for z = sin™ 'z can be
transformed into the series for x = sin z as

3 5
Sinz:z—%—i—%—---. (7.1.11)

The work of Gregory and Newton led to the representation of a function
f(x) in terms of finite differences which is known as the Gregory—Newton

series in the form

h(h _
f(x+h):f(x)—i—%Af(x)—i—%Azf(x)—k--- (7.1.12)

where Af(z) = f(z+c)— f(2), A f(2) = A[Af(2)] = Af(w+c) = Af (@),
N3 f(z) = A A% f(2)] = A2 f(z+¢) — A%f(z), ---. The series (7.1.12) is
the first major result in the calculus of finite differences.

Brook Taylor used the Gregory—Newton series (7.1.12) to develop the
most remarkable method for expansion of a function into an infinite series

2 3
Floth) = F@) +h () + @) @) e (7113)

This is celebrated Taylor series expansion of a function f(z) in 1715.

James Stirling also obtained Maclaurin’s power series representation of
algebraic function in 1717 and of general function in his Methodus Differ-
entialis of 1730. Incidently, it may be pointed out that Newton was not
the first to discover the series for sinz. In 1545, the Indian mathematician
Nilakantha (1445-1545) described the series for sinz and gave credit for the
discovery of series for sinx to his more remote predecessor Madhava.

It is evident from the above introduction that almost all of the great
mathematicians of the eighteenth century made remarkable contributions to
the subject of infinite series without any special attention to the question of
convergence and divergence. Indeed, Euler earned the crowning glory from
his work on infinite series and infinite products. His extensive research on
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this subject began from his solution of the Basel problem and the discovery
of the general infinite series for the zeta function. This problem dealt with
the determination of the sum of the squares of the reciprocals of integers. In
1730s, Euler first solved the Basel problem in four different ways which was
his first really major mathematical accomplishment. The sum of the Basel
series was one of the first examples of an infinite series and represented the
value of the Euler zeta function ((s) at s = 2. So, the solution of the Basel
problem clearly motivated him to discover the zeta function ((s) defined
by an infinite series for real s. So, the discovery of the zeta function was
another of Euler’s ingenious work with a beauty comparable to that of great
art or music.

7.2 FEuler and the Infinite Series

Historically, the celebrated Basel problem dealt with the determination of
the exact sum of the squares of the reciprocals of the integers

1 1 1 1 w2
S+ s+ +5+=—. 2.1
12+22+32+42+ 6 (7.2.1)
This sum was the value of the Euler zeta function ((s) at s = 2. In around
1730, Euler generalized (7.2.1) by first introducing the zeta function defined
by the convergent infinite series for real s > 1 in the form

oo

1 1 1 1 1
N Ao A 2.2
¢(s) v PR PR P A el s (7.2.2)

n=1
When s = 1, the series (7.2.2) gives the celebrated harmonic series
1 1 1 1
1 — b m e e 2.
+2+3+4+ +n+ (7.2.3)

This series diverges to infinity very slowly. Euler’s research on the harmonic
series strongly motivated him to discover a new mathematical constant, now
known as the FEuler universal constant, ~y. In order to define -, he started
with an infinite series

1 1 1 1 1
1 1+ )] =——— 4+ ———+---. 724
og( * x) z 22 33 4at * ( )

Or, equivalently,

1 1 111
—:10g<x+ )+———+——---. (7.2.5)
X X

202 3x3 4t
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Substituting for x = 1, 2, 3, - -+, n in (7.2.5) gives n numerical series which
are added together after cancelling log terms to obtain

Tl L Y D+ 2 (14 2 i+ + L
17273 n) =8 2 22 T 32 n?

1 1+ L -l- L + -+ L 1 1+ 1 -l- 1 +-- L
3 33 n3 4 34 nt '
Euler wrote thls result in the form

1 1 1
1+ -4+ 24+ .o 2 =1 1 2.
+2—|—3—|— —l—n og(n+1)+C, (7.2.6)

where C' denotes the sum of the infinite set of finite arithmetic series. He
then calculated the value of C for large n and obtained C' ~ 0.577218 - - -
This constant C' is now known as the Fuler universal constant, and is de-
noted by . In order to obtain a more precise representation of y, we sub-
tract logn from sides of (7.2.6) and note that log(n+1)—logn = log (1 + 1)
which tends to zero as n — oo so that the Euler constant v can be written
as
V:HILH;O<1+%+%+i+---+%—logn). (7.2.7)

However, it has not yet been proved whether v is rational or irrotational.

In one of his paper in 1739, Euler obtained a series infinite both direc-
tions as

1 1
--+P+E+l+x+x2+x3+---20. (7.2.8)
This follows from combining the results
lx =z(l-a)t=c+a?+a23+ .. (7.2.9)
-z
and
x 1\ 11
=(1-= =1l+—+=+--. 7.2.10
x—1 ( x) * x * x? * ( )

The series (7.2.9) is valid for < 1 and series (7.2.10) is valid for z > 1.
There is no value of x for which they are both correct.
Using the Gregory series (7.1.5) and the trigonometric identity

1 1
% = tan~! o 4 tan " o, (7.2.11)

Euler derived a new Euler series in the form

ORI
L)
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We can also derive another infinite series

2 2 2
1 T 2 T 2 4 x
- 22 42 2 (= 21
A el R S g A 5(1+x2) + (7:2.13)
from the following infinite series
o1
sin” "y 2 2-4
—_—— = — 7.2.14
Nt 3y Y ( )
Substituting sin~'y = 6 so that y = sin@ in (7.2.14) gives
2 -4
6 = sinf cos <1—|—§sm 9—|— 3 5sm 104 ) (7.2.15)
Putting tan™' 2 = 6 so that tanf = z, sinf = T and cos ) = —L— in

(7.2.15) yields (7.2.13). We next use Gregory’s series (7.1.5) and 1dent1ty

(7.2.11) to obtain a new series for 7:

T_Al L2 2+2422+
410 310 3 5\10
2
3 2 1 2 4/(1
1+ =+ (=) + 2.1
o' T3 073 5(10) * (7.2.16)

Euler also used the identity
T 1 3
— =5tan"! = +2tan"! —,
1 an 7 + 2tan 79
to derive another new series for 7.
Similarly, using Gregory’s series (7.1.15) or the series (7.2.13) and the
following identities

1 1 1 1
g = 2tan"! 3 + tan~! - % =4 tan_lg —tan~* (@> . (7.2.17)
1 1 1
g = tan™* 5+ tan~! =+ tan~! g, (7.2.18)
m 1 1 1
— =d4tan" ' - —t — +tan”' — 7.2.19
1 an”" ¢ an~ 70+ an 99, ( )

we can derive several new infinite series.

It was Euler who first made a serious attempt to study divergent series
in a systematic manner. In his letter to Goldback in 1745, Euler asserted
that the sum of a power series is the value of the function from which the
series is constructed. He also stated that every infinite series must have a
sum but since the word sum means the ordinary process of addition, and
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this process does not give the sum for the case of divergent series such as
the Leibniz alternating series

T—14+1—141-1+---, (7.2.20)

and the harmonic series (7.2.3). Perhaps, Euler preferred the word value
for the sum of a divergent series.
He started with the series expansion
1
14+

=l-az+a> -2+ +(=1)"2" +--, (7.2.21)

and put =1 so that the sum becomes % of the Leibniz series (7.2.20).
Differentiating (7.2.21) gives the expansion
1

— 2 n n

which, when x = 1, Euler found the sum % of the series

1

Z:1—2+3—4+--~+(—1)”(n+1)+---, (7.2.23)
and so on. Such examples led Euler to formulate his general principle of
assigning to any series its sum as the value at x = 1 of its generating

function. Euler was fascinated most by the divergent series, the one which
he referred to as divergent series par excellence in his 1760 paper. This is
his factorial series

1— 1420 =314+ 4l 546! — - 4 (=1)"nl +-- . (7.2.24)

More generally, the power series
I—Uz+202% =323 +4lzt — o 4 (=)"nla" + - = Z(—l)"n!x”,

n=0

(7.2.25)
cannot be used to study (7.2.24) as the power series (7.2.25) diverges every-
where in the complex plane except at x = 0. Euler developed an ingenious
method to find its accurate numerical value. He used differential equa-
tion method and a method of summation to study the following divergent
factorial series

fx)y=1—-1Uz+212? -312% ... . (7.2.26)
In his correspondence with Nicholas Bernoulli, Euler first showed that

y(x):xf(x):x—l!x2+2!x3—3!x4+---, (7.2.27)
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satisfies the first order differential equation
d 1
—y-i-Py:Q, P=— and Q=
dx x?
The method of integrating factor y = exp [[ Pdz] = exp (—1) gives the

general solution.

y(z) = e¥ /x*l exp (—i) dz + C exp (i) : (7.2.29)

where C' is an arbitrary constant. Setting C' = 0, we obtain

1
y(z) = e%/ ;e*% dt
0

. (7.2.28)

8=

so that

1 1 1:1 1
— _ e Ze 1 dt. 2.
flr) =T /0 Letar (7.2.30)

Putting = 1, Euler obtained the sum of the series (7.2.24) numerically
as

"1 1
f) = / 7 eXp (1 - Z) dt ~ 0.59637255. (7.2.31)
0

Similarly, Euler evaluated another divergent series

glr) =z —12%+1.32° —1.3.527 +---

1\ [° 1\,
= exp (2—x2) /0 exp <_2_252> t™ dt, (7.2.32)

where g(z) satisfies the first order differential equation z3¢’ + g = 2 which
has the integrating factor exp (—ﬁ)
Thus, he obtained the sum of the divergent series as

1—1+13—1.35+1357— - = /01 exp B (1- t—Q)] t=2dt. (7.2.33)
Replacing n! by the gamma function as
n!l=Tn+1)= /000 e 't"dt,
Euler treated the divergent series (7.2.26) in the form

flz)= / e tdt — x/ te tdt + xz/ t2etdt — - . (7.2.34)
0 0 0

A formal interchange of summation and integration leads to

o0 o0 —t
_ —t (1 _ 2,2 _ €
flz) = /0 et (1—at+a’t )dt /O T dt. (7.2.35)
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Consequently, the integral solution y(x) = x f(x) of the differential equation
(7.2.28) is

y(z) = f(z) = /00 we dt (7.2.36)

o l+at’

Using his rules for conversion of convergent infinite series into continued
fractions, Euler transformed his divergent series (7.2.26) into the continued
fraction

r x x 2z 2x 3x 3z
—————————— . 2.
1+ 14+ 1+ 14 1+ 1+ 1+ (7.:2.37)

It follows from the above that Euler made two major contributions.
First, he obtained an integral as the sum of the divergent series (7.2.26)
and then proved an asymptotic approximation of the integral. Second, he
developed a method of converting divergent series into continued fractions.
Then, he utilized the continued fraction for x = 1 to find a value of the
sum of the divergent numerical series (7.2.24).

On the other hand, Edmond Laguerre (1834-1886), a famous French
mathematician, used an argument similar to that of Euler to determine the
value of a divergent series

flz) =14z 4222+ 3% + - - (7.2.38)

Laguerre showed that his series (7.2.38) formally satisfies the differential
equation

xde—f—i—(x—l)f(x)——l (7.2.39)
dx? N o
and so, the function f(z) represents an integral solution
® eTtdt
= - 7.2.40
o= | =5 (7.2.40)

of the equation (7.2.39). He then showed that the integral solution can be
converted to the continued fraction like (7.2.37).

The method of differentiation or integration is often used to reduce a
given unfamiliar series to a known one. This method may often be employed
even if the infinite series does not contain a variable. There are cases as
stated above in which they cannot be rigourously justified and may even
lead to divergent series. For example

T 5172 x3

1 1
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so that

z? 3 x? x°

2
A T S S 7.2.42
vl =gt tsatast (7.2.42)
Differentiating (7.2.42) twice gives the Cauchy—Euler nonhomogeneous dif-
ferential equation
(fo(x))Hz1—|—x+x2—|—x3+---=(1—3:)_1. (7.2.43)
Integrating twice gives the solution of (7.2.43) as
1 1

f(z) = p + ?(1 —z)In(1 — x). (7.2.44)
We consider another series
1
f(x):1+2x+3x2+4x3+---:1_33. (7.2.45)
Integrating term by term leads to
/ fdt=a+a>+23+-.. = T (7.2.46)
0 11—z

Then differentiating (7.2.46) gives the Newton binomial series (7.2.22) with
x replaced by —x or (7.2.45)

d T 1
= — = . 7.2.47
/(@) dx <1—x) (1—-12) ( )
To find the sum of the numerical series
1 2 3

we consider the power series

+ = (7.2.49)

so that S = f(1). Differentiating (7.2.49) yields
3 4

f’(x):x—l—x?—i—%—i—%—i—---:er, (7.2.50)
and then integrating gives
flx) = / zefdr =xe® —e” + 1. (7.2.51)
0

Obviously, the sum of the numerical series (7.2.48) is

S=f(1)=1.
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It follows from the binomial series (7.1.6), that is,

> n!

fl)=(1+z)" = Z m ™ (7.2.52)
m=0 !

with x = 1 gives the sum of the numerical series
n=1) nn-1)(n-2)
TR 31
It was Thomas Jan Stieltjes (1856-1894) who made a serious attempt
to investigate continued fraction expansions of divergent series and its con-
nection with definite integral. He proved that the continued fraction
1 1 1 1 1 1 1

a1z+ as+ azz+ as+ asz+ aon+ G2n4+12+

S=1+n+=

= f(1)=2". (7.2.53)

- (7.2.54)

where a,, are positive real numbers and z is complex, converges to a func-
tion F(z) provided the series > ° | a, diverges and F'(z) is analytic in the
complex plane except at z = 0 and along the negative real axis so that F'(z)
can be represented by the Stieltjes integral

Fz) = /0 ) (7.2.55)

t+ 2

It is well known that the continued fraction (7.2.54) formally leads to
an infinite series
Co C1 C2 C3

?_2_2 ; ;4‘"', (7.2.56)
where ¢, are positive, and conversely, to every series (7.2.56) there corre-
sponds to a continued fraction (7.2.54) with positive a,,. Stieltjes demon-
strated how to determine ¢, from a,, and in the case where 220:1 a, is
divergent, the ratio ¢,/c,—1 increases and the series (7.2.56) diverges for
all z.

If ¢(t) is differentiable, then (7.2.55) reduces to the form

_ [T @)t
o 0 t + z
where d¢(t) = f(t)dt. To every divergent series (7.2.56) where > >~ | a, is
divergent it corresponds to an integral of the form (7.2.57). Given the series
(7.2.56), finding f(¢) is called the Stieltjes problem. A formal expansion of
the integral determines the constants

F(2) , (7.2.57)

Cn :/ A, n=0,1,2,---. (7.2.58)
0
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Thus, given ¢,, it is possible to determine f(t) from the infinite set of
equations (7.2.58). This is known as the famous Stieltjes moment problem.
However, this problem does not admit a unique solution as Stieltjes himself
constructed a function f(t) = exp (—ti) sint® which makes ¢, = 0 for all
values of n. So, additional conditions are needed to find a unique solution
of the problem.

Emile Borel (1871-1956), one of the leading French mathematicians of
the nineteenth century, provided the systematic development of the theory
of divergent series with a generalization of Ernesto Ceséro’s (1859-1906)
summability definition of divergent series. If the above argument of La-
guerre is applied to the power series of the form

Z anx™ = ag + a1 + agz® + -+ (7.2.59)
n=0

with a finite radius of convergent including zero, then the integral

/Oo e tf(at)dt = S, (7.2.60)
0

is called the Borel sum of (7.2.59) provided the integral (7.2.60) exists,
where

n!

flat)y =3 Dy, (7.2.61)
n=0

Borel used integral (7.2.60) and the associated series (7.2.61) to develop his
theory of divergent series. He also introduced the idea of absolute summa-
bility, and proved that the absolutely summable series can be treated as a
convergent series. In spite of serious objection raised by A. L. Cauchy and
N. H. Abel, the concept of summability gained some acceptance because
divergent series and integrals arise very often in problems in mathematical
sciences. There have been several summability methods developed to deal
with divergent series and integrals. Several great mathematicians includ-
ing Ernesto Cesdro, Leopold Fejér (1880-1959), Niels Henrik Abel, Otto
Holder (1859-1937), Friedrich Riesz (1880-1956), Karl Weierstrass, G. H.
Hardy, John Littlewood and Norbert Wiener developed different types of
summability methods for series and integrals to generalize the idea of con-
vergence. However, the modern theory of divergent series began in 1880
with the famous paper of Georg Frobenius (1849-1917). During the nine-
teenth and twentieth centuries, considerable progress has been made on
divergent series and integrals in order to obtain mathematical solution of
physical problems.
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It is true that there was considerable controversy about the sum of
divergent series in the seventeenth century because appropriate foundation
of analysis has not been laid out at that time. It is very pertinent or
appropriate to include the comments on divergent series by a renowned
British pure mathematician, G. H. Hardy in his famous book on Divergent
Series published in 1948 as follows:

“... it does not occur to a modern mathematician that a collection of
mathematical symbols should have a ‘meaning’ until one has been assigned
to it by definition. It was not a triviality even to the greatest mathemati-
cians of the eighteenth century. They had not the habit of definition: it was
not natural to them to say that, in so many words, ‘by X we mean Y’ ...
but it is broadly true to say that mathematicians before Cauchy asked not
‘How shall we define1—1+1—---" but ‘What is 1—14+1—---7", and that
this habit of mind led them into unnecessary perplexities and controversies
which were often really verbal.”

While discussing Euler’s remarks in his interesting letter to Goldback
in 1745, G. H. Hardy also said:

“It is a mistake to think Euler as a ‘loose’ mathematician, though his
language may sometimes seem loose to modern ears; and even his language
sometimes suggests a point of view far in advance of the general ideas of
his time. ... Here, as elsewhere, Euler was substantially right. The puzzles
of the time about divergent series arose mostly, not from any particular
mystery in divergent series as such, but from disinclination to give formal
definitions and from the inadequacy of the current theory of functions.”

Clearly, Euler was very much ahead of his time with regard to his work
on divergent series. In spite of Euler’s great success in finding the value
or sum of a divergent series, Euler has been criticized for his lack of math-
ematical rigor when he dealt with divergent infinite series. However, the
era of Leibniz and Euler was more dominated by profound intuition rather
than more logical and rigorous reasoning of modern mathematics. In spite
of serious objection of Cauchy, Abel and S. D. Poisson (1781-1840) suc-
cessfully used divergent series and integrals to represent the free surface
elevation function in the theory of waves produced in deep water by a lo-
cal disturbance acting on the free surface of water. On the other hand,
Abel introduced a method of summability to generalize the notion of con-
vergence more than a century later after Euler’s work on divergent series.
Abel’s summability is stronger than the Cesdro method of summation. If
a series is Cesdro summable, it is always Abel summable to the same sum.
However, the series
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1-243-4+45—--=> (-1)"(n+1), (7.2.62)
n=0

is Abel summable to i, since

= 1
n 1 — 7.2.63
Zax = D = (269
But the series is not Cesaro summable.

Finally, it may not be out of place to mention the asymptotic expansion
of the Euler integral as follows:
oo
/ t e tdt ~ 1. % + 2—; - 3_i +---as T — o0. (7.2.64)
- r x x
In spite of early criticisms and controversies, divergent series and integrals
have been found to be useful in the representation and asymptotic ap-
proximation of functions. From mathematical and physical points of view,
Euler’s ingenious work was very useful and has served as the foundation of
more modern theory of divergent series and integrals with applications.

7.3 Euler’s Zeta Function

After solving the famous Basel problem in 1735, Euler introduced the zeta
function, ¢((s) by the infinite series (7.2.1) in around 1737. He then con-
tinued his research for finding the value of ((2n) for the natural number
n > 1. Almost 110 years before Riemann’s discovery of ((s) for complex
s =z = x + 4y in 1859, Euler used the summation of divergent series and
mathematical induction to discover a remarkable functional equation for
the zeta function in 1749 in the form

73T (g) ((s) =n =T <1 5 8) C(1—s), (7.3.1)

where I'(s) is the Euler gamma function. Or, equivalently, the functional
equation (7.3.1) takes the form A(s) = A(1 —s), where A(s) is equal to the
left hand side of (7.3.1).

It follows from the definition (7.2.2) of ((s) that

<1—%>§(s)=<l+i+%+ ) <219+%+ )

1 1 1
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This means that the multiplication of {(s) by (1 — 27%) results in the elim-
ination of all the terms in which n is a multiple of 2 from the original series
for ¢(s). Similarly,

(1_%) (1_%)«5):<1+%+%+---)—<%+é+--->,

where all the terms in which n is a multiple of 2 or 3 have been eliminated
from the original series for the zeta function. Proceeding inductively, it
turns out that

(1—2—18> (1—%)---(1—%)C(5)=1+X/: ni (7.3.2)

where Z begins with the first prime after p, and
1
>
as p — oo for any & > 0.
Consequently, for Res > 1,

) =11 (1 - pi> B : (7.3.4)

p
where the product is taken for all primes p.
Or, equivalently,

/ o0

1 1
<D mm< D a0 (7.3.3)

n=p+1

% _ 1;[ (1 _ pi) , (7.3.5)

Using his neat analytic proof given above, Euler established his cele-
brated identity (7.3.4) or (7.3.5) which expresses the zeta function as an
infinite product extended over prime numbers only. The Euler identity ap-
peared for the first time in Euler’s famous treatise Introductio in Analysin
Infinitorum published in 1748. This is a remarkable discovery of Euler
which was the starting point of the Riemann Hypothesis. Evidently, the
zeta function is closely associated with the distribution of prime numbers
and plays a fundamental role in number theory and analysis.

One of the remarkable consequences of the identity (7.3.4) is that it is
an analytic expression of the fundamental theorem of arithmetic. Indeed,
each factor of the product (1 — p~*)~! can be expressed as a convergent
geometric series
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Thus, the product

o pi Py Pye

can be written in increasing order p; < ps < ---. We formally calculate

the product as a sum of terms, each term generating from a term p]ks in

the sum corresponding to p; with a particular £ which depends on j, and

with £ = 0 for j sufficiently large. Consequently, the resulting product is
1 1

ko k k)"t
(p11p22...pm) n

where the integer n(> 1) is written uniquely as a product of primes n =

p]flp§2 ---pFm_ Thus, the product is equal to

)

o0
1
> =),
n=1 ne
If n is a positive integer and aj are positive integers, then n =
pI'ps* - pyt, and

1 o pn)
N = ; 7.3.6
C(S) — ns ( )
where p(n) is the Mébius function defined by
1, n=1
pn) = (=D ifar =ag=---ap=1. (7.3.7)
0, otherwise

Furthermore, if d(n) denotes the number of divisors of n (including 1 and
n) and oy (n) denotes the sum of the kth powers of the divisors of n, that
is, ok(n) =34, d*, then

C(s)C(s—k)= Z Uk(gn), Res>max(1,1+k), (7.3.8)
n=1 w
where d|n means d divides n.

Euler’s discovery of the product formula (7.3.4) in 1744 was concerned
with an unexpected and deep connection between analysis and number
theory. Indeed, he proved that the divergence of the harmonic series (7.2.3)
implies that the number of primes is infinite and vice versa. In Euler’s
notation, for s > 1, it follows from (7.3.4) that (7.2.2) can be written as

11 23 38 5
) =T+ +5+ 21 3 -1 5 —1

(7.3.9)
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This remarkable identity represents the unique factorization property of
natural numbers. When s = 1, it follows from (7.3.4) that

i % _ 1;[ (1 _ %)1 , (7.3.10)

n=1

Or, equivalently,

11 <1 - %) =0, (7.3.11)

p

where the product is taken over all primes. Based on his imprecise argu-
ment, Euler proved that

> 1o 00, (7.3.12)

» P

where the sum is taken over all primes p, and arrived at the correct con-
clusion that the number of primes is infinite. Of course, if there were finite
number of primes, the above series (7.3.12) would converge automatically.
The study of prime numbers had always been his central research topic
in number theory with the fundamental focus whether there are infinitely
many primes or not. The Euclid’s Elements contained the solution of the
problem in a simple and elegant manner. However, Euler’s easy proof of
the product formula (7.3.4) laid the foundation of the analytic number the-
ory and stimulated considerable research on the prime number theory and
analysis in the nineteenth and twentieth centuries.

As a natural generalization of his great work that there are infinitely
many primes, Euler conjectured that any arithmetic progression of the form

a,a+h,a+2h,--- ,a+nh,--, (7.3.13)

where a and h are relatively prime, contained infinitely many primes. It
remained an unsolved problem for almost hundred years. Euler’s prod-
uct formula and the conjecture inspired Peter Gustav Lejeune Dirichlet
(1805-1859), a student of Friedrich Gauss and then successor to Gauss at
Gottingen, to formulate the general problem of primes in arithmetic pro-
gression and to generalize the Euler product formula. Using Euler’s re-
markable insight and imagination, Dirichlet proved that there are infinitely
many primes in the arithmetic progressions

1,5,9,13,---, (4k+1),--- and 3,7,11,15,---,(4k—1),---. (7.3.14)
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More remarkable was the Dirichlet’s generalization of the Euler zeta
function by first introducing the Dirichlet L-function defined as

Lis,) =Y Xr(:) for s> 1, (7.3.15)
n=1

where x(n) is called the Dirichlet character defined by

0, for even n
x(n)=< 1, forn=4k+1 ;. (7.3.16)
-1, forn=4k+3

Clearly, x(n) is a multiplicative function, that is, x(n)x(m) = x(mn) for
all m, n € Z. In particular, the function L(s) is defined by

1 1 1 (=1t
Ls)=l- 4+~ Lo 2 7.3.17
(s) wtm T 2 1) ( )
so that
1 1 1 ™
L(N=1—--4+Z_Z4+...= 2, 3.1
(1) 3+5 7—|— 1 (7.3.18)

Historically, series (7.3.18) is probably the most simplest representation for
7 published in 1670 by a famous British mathematician, James Gregory.
The sum of the Gregory series was also rediscovered by the 28-year old
Leibniz in 1674 using geometric arguments. The sum of the Gregory series
can easily be calculated as the limit of a definite integral

lim w(1+t2)_1dt—lim x_x_3+x_5_ 0<z<l1
z—1 [, _fc—>1 3 5 ’ '
(7.3.19)
Or, equivalently, in the limit as x — 1,
10T 1 1
tan 't] = - =1—-+—-—---00=L(1,\). 7.3.20
[ran~ ]y = T =1-g+- 00 =L(LY) (7.3.20)

Since the Dirichlet character function x(n) is multiplicative, Dirichlet
generalized the Euler product formula in 1837 in the form

L(s,x) = i X(:L) =11 <1 - @>1 for s> 1, (7.3.21)

n s
n=1 P p

where the product is over all prime numbers p. Based on Euler’s ingenious
work, Dirichlet product theorem is another remarkable discovery.
Taking logarithm of both sides of (7.3.21) yields

log L(s,x) ~ Y % +0(1). (7.3.22)
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In the limit as s — 1 with the fact that L(1,\) = F # 0 shows that

>, X(p)/p® remains bounded. In view of the result that 3 % diverges, it

turns out that there are infinitely many primes of the form (4% + 1).
Under certain conditions, the Dirichlet series for real or complex s

p =y L

n

(7.3.23)

can be expressed in terms of a product of Euler’s factors Ep(s) as follows:
D(s) =[] Ew(s), (7.3.24)
p

where the FEuler factors are given by

Ey(s)=1+fp)p*+f(0*)p > +f () p > +---. (7.3.25)

When f(n) = 1, the Dirichlet function D(s) coincides with the Euler zeta
function. It also follows from (7.3.4) that

B0

p

_ =S —2s . —3s _OO)‘(n)
_1;[(1 pE4pE —p Tt )—nzz:l s

. (7.3.26)

k
where A(n) = (=1)?, p = Zam if n=p{'ps?---pr* is the prime factor-
m=1

ization of n.
In 1749, Euler presented a paper at the Berlin Academy of Sciences and
reported a new function related to the zeta function defined by

Bs) = (-1 (7.3.27)
n=1

He preferred to work with this alternating series for the phi function rather
than the zeta function for better convergence and more accurate numerical
calculation. He also discovered the following relation between ¢(s) and
¢(s), and the famous functional equation for ¢(s):

o(s) = (1—2"%)((s) (7.3.28)
7 (2571 = 1) ¢(1 — s) + (2° — 1) cos (%‘S) T(s)é(s) = 0. (7.3.29)
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This series (7.3.27) for the phi function is convergent for s > 0 by the
Leibniz test for convergence of alternating series. But, if s < 0, the series
diverges and so, Fuler’s computation reveals the definition

1 1 . > L
- —+——-= lim ;(—1) —» <0 (7.3.30)
If s = m is a positive integer, Euler showed that the power series (7.3.30)
represents a rational function with (1 4+ 2)™*! as its denominator and so
its limit as * — 1 exists and can be explicitly calculated.
Euler was not successful to verify (7.3.28) for all s. For s = 1, it follows
from (7.3.27) that
1 1 1
¢(1):1—§+§—Z+---:10g2. (7.3.31)
The identities (7.3.28) and (7.3.29) can be combined to obtain another

famous functional equation for real s in the form

C(1— ) = 75215 (5)¢(5) cos (%) . (7.3.32)
One hundred years later, Riemann gave a rigorous proof of this equation in
1859 for complex s = x + 1y.
Without calculators or computers, in 1731 Euler developed a new
method for computation of ¢(2) based on the infinite series in the form

o0

1 1
Zlog(l—z)=— v h 7.3.33
- og(l —x) ; o ( )

Integrating with respect to = form 0 to 1 gives

¢(2) = _/0 i log(1 — z)dz.

Putting 1 — z = u and writing the integral as the sum of two integrals gives

(@) = — VO log ¥+ /1 iog“ du} (7.3.34)

1—u —u

which is, expanding (1 —u)~! in power series,
Sy § o L
2) =log(1l —x)1 — _. 7.3.35
@) = loal1 —)log + 3 5+ 30 (7.3.35)

Using x = %, Euler obtained the formula in 1733 for computing ¢(2) up
to six decimal places

((2) = (g2 + 3 5oy

n=1

~ 0.480453 + 1.164482 = 1.644934. (7.3.37)

1

~ (7.3.36)
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However, in 1730, Stirling also computed ¢(2) to nine decimal places. Thus,
the problem of numerical computation of {(n) for higher values of n must
have motivated Euler to discover his famous Euler-Maclaurin summation
formula in 1732. Using this formula, Euler obtained a more accurate ap-
proximate value of ((2), ¢(3), and {(4). His numerical value for {(2) up to
twenty decimal places is recorded below for historical interest:

¢(2) = 1.64493406684822643647. (7.3.38)

Evidently, Euler’s original method of computation of {(n) for higher
values of n opened a new area of research which is known today as mathe-
matical computation.

Euler not only proved the formula (7.3.32) for all integral values of s
and verified it for s = % and s = % He then conjectured that the formula
is true for all values of s. Like Euler, Riemann also recognized that the zeta
function played a fundamental role in the distribution of primes in number
theory. For an arbitrary real number x > 2, 7(z) denotes the number of
prime numbers less or equal to x. For example, m(8) = 4, since 2, 3, 5
and 7 are primes and 7(11) = 5. Originally, Euler believed that prime
numbers are distributed totally irregularly. In fact, Legendre in 1785, and
then Gauss in 1792 independently investigated the asymptotic distribution
of 7(z) for large x through an intensive study of tables of logarithms. The
fundamental Prime Number Theorem states that, for large number x, the

asymptotic formula for 7 (x) is

m(x) ~ (

In 1798, Legendre proved the following limiting result

lim @

r—oo I

* ) =liz as x — o0. (7.3.39)

Inz

= 0. (7.3.40)

This implies that there are considerably fewer prime numbers than natural
numbers. The more striking fact is that the asymptotic distribution of
prime numbers is closely associated with the singularity of the zeta function.
Using the product formula (7.3.5), it can be shown that for large z, the
asymptotic distribution of prime numbers is given by
xT
() ~/2 hj% = Li(x). (7.3.41)

Although (7.3.39) and (7.3.41) are equivalent, the logarithmic integral
(7.3.41) provides a more accurate numerical approximation to 7(z) than
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does (z/Inz). In 1791, Gauss first conjectured result (7.3.41) which was fi-
nally proved independently by Jacques Hadamard and Charles de la Valleé—
Poussin in 1896. However, in 1914, a great British mathematician, J. E.
Littlewood (1885-1977) proved that the difference Li(x) — w(z) assumes
positive and negative values infinitely often. Although the asymptotic re-
sult (7.3.41) can numerically be verified for a very large number of cases, it
may not be true for all large z. In 1948, Erdds and Selberg discovered an
elementary proof of the prime number theorem.

On the other hand, Riemann made much more contributions than sim-
ply determining the asymptotic distribution of prime numbers based on the
formula (7.3.5). Taking log of (7.3.5), he obtained

1 I 1 11
logé(s):ZE—FiZﬁ—i—gzﬁ—F”- (7.3.42)
p p p

and then replaced p~™° by
s/ 2~ dy
pn

élog C(s) = /100 2~ T II(2) da, (7.3.43)

so that

where
() = n(z) + %w (x1/2) + %w (x) 400, (7.3.44)

Riemann then expressed II(z) as the Fourier complex inversion integral
in the form

c+ioco
(x) = / %xsds, c>1 (7.3.45)

and evaluated it by the residues of the singularities of log ((s) at s = 1 and
at the zeros of ((s). It then follows from the inversion of (7.3.44) that

(@)=Y %H (xl/m) : (7.3.46)

where m consists of all natural numbers not divisible by any square other
than one, and g is the prime factors of m. Thus, the distribution of the
prime numbers is closely associated with the zeros of {(s).

Like Euler, Riemann also recognized that the zeta function and its zeros
played a fundamental role in the distribution and analysis of primes in num-
ber theory. The only zeros outside the critical strip defined by the inequality
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): Riemann Critical Line

Res= l
2

Fig. 7.1 The zeros of the Riemann zeta function.

0 < Res <1 are at the even negative integers (s = —2n, n=1,2,3,---)
known as the trivial zeros. He also proved that {(s) is an analytic function
in the whole complex s-plane except for a simple pole at s = 1 with residue
one, and it has no other singularities. In 1859, Riemann formulated his
celebrated Riemann Hypothesis which states that all non-trivial complex
zeros of ((s) lie on the critical line Res = % in the complex s plane as
shown in Figure 7.1. In other words, the complex zeros are at s = % + iy
which are symmetrically located on the critical line. The first few complex
zeros are at y = 14-134, 21, 25, 30-5, 33, - - -. This is the most famous un-
solved problem in mathematics. In 1914, G. H. Hardy proved that there are
infinitely many zeros of the Riemann zeta function on the Riemann critical
line Re s = % Many extensive numerical experiments with supercomputers
have given no indication as of yet whether the Riemann hypothesis is true
or false. Many recent computations reveal that fifty billion complex zeros
lie on the critical line. Furthermore, precise asymptotic estimates show that
at least one-third of the zeros of {(s) must lie on the critical line.

The truth of the Riemann Hypothesis implies that the deviation of the

prime numbers from the asymptotic limit Li(z) is
m(z) = Li(z) + O (VzInz) (7.3.47)

and a single zero off the line s = % + iy would change the distribution of
primes in a significant way.
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In addition to two functions L(s) and ¢(s) defined respectively by
(7.3.17) and (7.3.27), Euler preferred to work with another function 6(s)
related to the zeta function defined by

1 1 1

0(s) =1+ — 4+ — 4+ oo = S 1. 3.4
() =145+ + ;0(2”“)5, 5> (7.3.48)

o0

Obviously, (s) can be expressed in terms of ((s) and ¢(s) in the form

0(s) = <1 - %) ¢(s), (7.3.49)
—1)"12.(2n — 1)!

ﬂ-Qn

(1 —2n) = ( »(2n), n=123,---, (7.3.50)

where (m), m =0, +1, £2, - -- is defined by

) oo (_1)n71xn

0 =1 — .3.51
(m) im ; e (7.3.51)

Euler also proved another famous formula for L(2n + 1) in the form
Eop
22n+2(2n)V
where the Euler numbers, Es, are defined by the coefficients of the expan-

sion of sec x:

L(2n+1) = (=1)*g?"H! (7.3.52)

o0

n EQ" 2n
secx = n;) (-1) TR (7.3.53)
so that
Ey=1, Ey=1, E;=5, FEg=61, Eg=1385---. (7.3.54)

In 1734, Euler discovered another remarkable formula for ¢(2n) given
by
1 (27)%"(Bay)

1

where B,, are called the Bernoulli’s numbers representing the coefficients
of the series

z By By By, Bi, <= B, ,
ez—l_ﬁ—kﬁz—kiz +ZZ +"'—ngo—'2, (7.3.56)
where
1 1 1 1
BO—l,Bl—_§aBQ—6,B4—_%736—E,"‘a (7.3.57)
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and
B3 =Bs=---=0. (7.3.58)

In fact, these Bernoulli numbers were first discovered by Euler and they
have widely been used in probability theory of James Bernoulli.
In particular, Euler obtained the following remarkable formulas for the

zeta functions as
2 4 6 8

™ ™ v
C(4):%, C(G):%, and C(8)=9450. (7.3.59)

Since ((2n) is always a rational multiple of 72", it follows that ((2),
¢(4), ¢(6), --- are all transcendental, and it fact, they are closely related
to Bernoulli’s numbers. There were many other open problems which dealt
with the values of the zeta function at certain special points. For odd
n = 2m+1(m > 1), no formula is known for {(n). This is an open unsolved
problem. Is ¢(2n + 1) for positive integers n algebraic or transcendental?
The answer has not yet been found for a single value of (2n + 1). In 1978,
Aprey showed that ((3) is irrotational and then, in 2000, he also proved
that ¢(2n + 1) is irrotational for infinitely many positive integers n. But,
the general problem for all n remains unresolved.

It also follows from the value of {(2) that

1 1 w2 1 2

1 R - e e — —— ]_ —_ = = —. 7.3.60

N 32 N 52 N 6 ( 4) 8 ( )

For all complex z such that |z| < 7, and in particular, for all Rez = «
between =+,

1 25 254 4 25 5
where Sa, = ((2n). Also, cotz can be expressed in terms of Bernoulli’s
numbers as

1 22B,; 24B, 3 2°"B,, 2n—1
cotz:;— o AT T 2T (2n)!z — e (7.3.62)
Equating the coefficients of (7.3.61) and (7.3.62) gives
2 22. By 2 24 2 22n
24 _ LS =By . =8, = _B. (7363
2 52 21 1 ATt T m2n 52 (2n)! ( )

Using the values of Bernoulli’s numbers (7.3.57) and (7.3.58) leads to the

result

22n—1ﬂ.2n

San = ((2n) = =5 5 Bn. (7.3.64)
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Substituting the values of cotz and cot2z from (7.3.61) in the identity
tan z = cot z — 2 cot 2z gives the series expansion

2 4 6 _
255 (2 1)Z+254(24 1)z3+256(2 1)Z5+'_', (7.3.65)

76

tanz =
2 i
which holds for |z| < 7, and for all real x between £7.
On the other hand, substituting for cot 1z and cot z from (7.3.61) in
cosec z = cot %z — cot z, we obtain

23— 1 25— 1
S +( )%z?’—i—( )56

1 5
cosecz = ;+(2_1)FZ 52 5T 6 2 +---, (7.3.66)

where |z| < 7.
Similarly, it can be shown that
22 24 5 22n+2
secz = ?R1 + FRBZ + -+ WRQTL+1Z’” + -y, (7.3.67)

where |z| < § and

1 1 1 1
Ron1 = 12nt1 ~ 32n+1 + 52ntl 72+l oo (7.3.68)
For complex z (|z| < %), the infinite series
Ey Ei_| B o En_n
sechz = o+ Tz+§z2+--- = Z%HZ , (7.3.69)

converges, where the coefficients E,, (n =0,1,2,---) are called the Fuler
numbers, E, = 0 for odd n and

Eo=1, Ey=-1, E; =5, Eg=—61,--. (7.3.70)

More generally, the relation between the Euler number and the Bernoulli
number is given by

42n+1 1 2n+1

An integral representation of the zeta function is given by

1> ¢ tdt
((s) = ) /0 =) Res > 1. (7.3.72)
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In 1734-1735, Euler also discovered many additional beautiful numerical
series as follows:

L(3)=1—%+5—13—%+---=§—Z, (7.3.73)
O = 14 bbb = (7.3.74)
5
L(5):1—%+5—15—%+---=%, (7.3.75)
9(6):14—%4—5—164—%4—---:9#—;), (7.3.76)
1+%—é—%+$+1—11—---=2%, (7.3.77)
and
1+%—i—é+%+é—---:;—\7/r§. (7.3.78)

Euler’s phi function (7.3.27) led him to discover another divergent al-
ternating series for odd values of m > 0

$p(—m)=1-2" 43" —4" ..., (7.3.79)
which is related to the power series
Ry(z)=1-2"2+3"2® — 4" + ... . (7.3.80)
In fact, Ro(z) = (1 +z)~! and for integer m > 0,
d
Ryyi(z) = e [z R ()], (7.3.81)

so that, for m > 0, R,,(x) assumes the form
Rp(z) =1 +2) ™ P, (z), (7.3.82)
where P, (z) is a polynomial of degree m — 1 with integral coefficients. In
fact, R,,(z) satisfies the relation
1
R (E) = (-1)""22R,, (z), (7.3.83)

and ¢(—m) = Ry, (1) = 0 for every positive even integer m. However, for
odd m > 1, ¢(—m) is related to ¢{(m + 1) which is then related to the
Bernoulli numbers so that

¢(—m) = Rpn(1) = (2m+! — 1) iLﬁ, (7.3.84)
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which is valid for all odd numbers m > 0 and also for all even m > 0, since
both sides of (7.3.84) are zero.
Finally, it follows from the Wallis product formula (7.1.1) that

H ( 4n2)_1 (7.3.85)

n=1

which is, by taking logarithms,

logg:—210g<l—ﬁ)
n=1
:ii#, since log(l —x) = iﬁ
n=1k=1 k (4n2)F k=1 k
S (S | = ((2k)
=l T Ak

This is a new series representation for log (%)

7.4 FEuler and the Fourier Series

Joseph Fourier is also most celebrated for his discovery of the representation
of an arbitrary function over an interval in terms of trigonometric functions,
universally known as Fourier series. However, it is also historically true
that the series expansion of cosine and sine functions goes back to Daniel
Bernoulli and to Euler who developed the formulas for the Fourier coefhi-
cients by integrals. In the eighteenth century, the mathematical study of
such series representation of functions originated in problems of mathemat-
ical astronomy, conduction of heat, vibrating strings and membranes, due
to the fact that functions involved are periodic and phenomena are largely
periodic. Euler also presented the theory of Fourier integrals in his own
work on wave phenomena including water wave problems.

A Fourier series representation of a periodic function f(z) in an interval
—¢ < x < ¢ is an expression of the form

04 Z {an cos ( ) + by, sin (mgx)} , (74.1)

where the Fourier coefficients a,, and b,, are given by Fuler’s formulas as

an g/f cos )dx n=0,1,2,3, (7.4.2)
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and
1 [f . /nmx
by, = Z/,gf(x)sm (7) dz, n=123,-.--. (7.4.3)

However, Euler made no mention about the conditions under which these
are necessarily the values of the coefficients a,, and b,,.
In particular, when £ = 7, then the Fourier series takes the simple form

1 o0
f(z) = 540 + Z (an cosnz +bysinnz), —m <z <, (7.4.4)

n=1

where the Euler formulas for a,, and b,, are given by

1 T

an = — f(z) cosnz dz, n=123,--, (7.4.5)
™ —T
1 [™ .

by = — f(z)sinnz dz, n=123---. (7.4.6)
T

Universally considered as the greatest mathematicians since Carl
Friedrich Gauss, Bernhard Riemann began to give a rigorous foundation
of the theory of Fourier series by considering the first problem of sufficient
conditions for the existence of integrals which give the Fourier coefficients
ap and b, of a function f(z). In the earlier researches on the Fourier series
by Dirichlet, he became interested in this series, particularly in its ability to
represent both continuous and discontinuous functions. His superior treat-
ment served as the basis for many later investigations on the convergence
or summability of Fourier series. He also proved a convergence theorem
of Fourier series which states that the Fourier series of a real continuous
periodic function f which has only a finite number of relative maximum
and minimum converges everywhere to f.

Subsequently, it became clear that it would be simpler to deal with the
complex exponential form of the Fourier series representation

fla) = i Cn €Xp (m;m> (7.4.7)

n=—oo

where the Fourier coefficients ¢,, are given by

I '
o= _/ f@)exp (-2 ) de,  n=0,1,2,3,---.  (7.48)
20 J_, 14

The convergence or divergence of Fourier series has a long and complex
history of over three hundred years. The fundamental question is whether
the Fourier series generated by a periodic function f converges to f. The
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answer is certainly not obvious. If f(x) is 2w-periodic continuous function,
then the Fourier series (7.4.4) may converge to f for a given z in —7 <
x < m, but not for all x in —7 < x < w. This leads to the questions of
local convergence or the behavior of f near a given point x, and of global
convergence or the overall behavior of a function f over the entire interval
—nr<zxz<m.

There is another problem that deals with the mean-square convergence
of the Fourier series to f(x) in (—m, ), that is, if f(z) is integrable on
(=m, ), then

1 /7

— | @) = su(@)Pdz —0 as n— oo, (7.4.9)

where s, (z) is the nth partial sum defined by

Sn(x) = % + Z (ag cos kx + by sin k) , (7.4.10)
k=1

which is, by (7.4.5) and (7.4.6)

_ L 1+2 Z (cos kt + cos kx 4 sin kt + sin kx)] f)de
2 J_, —
1 [" -
) 1+2;cosk(x—t)] fl)de
- 2i Dol — ) f(t)dt = (f * Dy) (), (7.4.11)
™ —T

where (f * g)(x) is the convolution of f and g defined by

(Fra)@) =5 [ fla= s (7.4.12)
and D,,(0) is called the Dirichlet kernel defined by
D,(0)=1+2 2”: cos k6 (7.4.13)
k=1
—14 - (%0 4 ¢—ik0) = zn: k0 (7.4.14)
k=1 k=—n

This is a finite geometric series with the first term exp(—inf), the ratio
exp(—i#) and the last term exp(inf), and hence, the sum is given by
sin (n+2)0
D, (0) = M. (7.4.15)

1
sin 50
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Clearly, D,,(0) is an even function with period 27 and satisfies the property
1 s

5o | Da(0)df=1+040+-+0=1 (7.4.16)

It is important to point out that the mean square convergence does not
provide any insight into the problem of pointwise convergence. An infinite
series Y7, fn(z) is called pointwise convergent in a < x < b to f(x) if it
converges to f(x) for each z in a < x < b. In other words, for each z in
a < x < b, we have

|f(z) —sp(z)] =0 as n — oo, (7.4.17)

where s,,(z) = Y ;_; fr(z) is the nth partial sum of the infinite series.
On the other hand, the series > .~ fi(z) is said to be uniformly con-
vergent to f(x) ina <z <bif

Jnax, |f(z) —sp(x)] =0 as n — oo. (7.4.18)

Evidently, uniform convergence implies pointwise convergence, but the con-
verse is not necessarily true. It is also noted that uniform convergence is
stronger than both pointwise convergence and mean-square convergence.
Indeed, the mean-square convergence theorem does not guarantee the con-
vergence of the Fourier series for any x. On the other hand, if f(z) is 27-
periodic and piecewise smooth on R, then the Fourier series (7.4.4) of the
function f converges to f(z) for every z in —7 < z < 7. It has been known
since 1876 that there are periodic continuous functions whose Fourier series
diverge at certain points. Many great mathematicians including Fourier,
Riemann, Dirichlet, Georg Cantor, Paul Du Bois-Reymond (1831-1889)
and Andrei N. Kolmogorov (1903-1987) paid considerable attention to the
convergence problem of Fourier series and trigonometric series. In his fa-
mous paper of 1829, Dirichlet formulated a set of sufficient conditions that
the Fourier series generated by a given f(z) converges to f(x). Under the
guidance of Dirichlet, Riemann also investigated necessary and sufficient
conditions that a function must satisfy so that at a point z in —7 <z <7
the Fourier series for f(x) should converge to f(z). Although Riemann
did prove the fundamental result that if f(z) bounded and integrable in
—7 < z < 7, then the Fourier coefficients a,, and b,, defined by (7.4.5) and
(7.4.6) tend to zero as n — oo, but the convergence problem of Fourier
series remained unsolved.

For about fifty years after Dirichlet’s work, it was generally believed
that the Fourier series for any continuous function f(z) in —7 < z <7
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converges to f(x). But in 1873, Du Bois-Reymond constructed an exam-
ple of a function continuous in —7 < x < 7 whose Fourier series did not
converge at a particular point. In 1883, he also showed that any Fourier
series for a function f(z) that is Riemann integrable can be integrated
term by term, even though the series is not uniformly convergent. In 1893,
Camille Jordan developed a sufficient condition in terms of a function of
bounded variation which was introduced by him. His sufficient conditions
assert that the Fourier series for an integrable function f(x) converges to
3 [f(z —0) + f(x + 0)] at every point  for which there is a neighborhood
in which f(z) is of bounded variation. In 1926, Kolmogorov gave an exam-
ple of a function f € L! whose Fourier series diverges everywhere. It was an
open question for a period of a century whether a Fourier series of a contin-
uous function converges at any point. In 1966, Lennant Carleson provided
an affirmative answer with a deep theorem which states that the Fourier
series of any square integrable function f(z) in —7 < z < 7 converges to
f(x) at almost every point.

We next state the Pointwise Convergence Theorem. If f(x) is a
piecewise smooth and periodic function in —7 < x < 7 with period
27, then, for any z in (—m,7), the Fourier series for f(x) converges to
2 [f(z —0)+ f(z 4 0)]. In other words,

ap > . . o 1
5 + Z (an cosnz + b, sinnx) = 3 [f(x—=0)+ f(z+0)], (7.4.19)

n=1
where z is any point of jump discontinuity in (—7, 7), and

1 s

ap = — ft)cosnitdt, n=0,1,2,3,--- (7.4.20)
T™J—m
1 (7 .

b, = — ft)sinntdt, n=0,1,2,3,---. (7.4.21)
T

-7

Obviously, at any point of continuity x in [—7, 7], the Fourier series (7.4.19)
for f(x) converges to f(z), and at the endpoints, x = +m, the Fourier series
(7.4.19) converges to 3 [f(—m — 0) + f(7 + 0)].

In his paper of 1754, Euler derived trigonometric series representations
of a function in a totally different manner. He wrote the geometric series
involving trigonometric functions in the form
1

" ;S "= . 7.4.22
Za (cos@ + isinz) 1—a(cosz+isinz) ( )

n=0
Or, equivalently,
> 1

a” (cosnz + isinnz) = — .
Z ( ) 1—a(cosz+isinx)

n=0
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Multiplying both numerator and denominator by the complex conjugate of
the denominator of the right hand sides gives
(1 —acosz) —iasinx

(1 —2acosz + a?)

o0
1+ Z a” (cosnz +isinnz) =

n=1
Equating real and imaginary parts yields
2

> acosx —a
" cosnx = 7.4.23
Za oS (1 —2acosz + a?) ( )

> asinz
" si = . 7.4.24
Za S (1 —2acosz + a?) ( )

Substituting a = 1 in (7.4.23) gives a divergent series

1
5:1:I:cosa:+cos23:isin3a:+cos4xi--~. (7.4.25)

Euler then formally integrated this result to obtain the Fourier series
for the algebraic function as

1 o0 .
ST —a) = nz::l Smn”m, 0<z<m, (7.4.26)
and
Z 1 Smm, —r<z<m. (7.4.27)

Integrating term by term and determining the constant of integration
gives

72 x? = cosnx
— =) =) (-t == 7.4.28
(5 7) =2 (7.4.28)
During the 1860’s, the properties of the Fourier coefficients were also in-
vestigated and among many important results obtained were what is called
the Parseval formula proved formally by Marc-Antoine Parseval (1755-
1836) in 1799. The Parseval formula can formally be derived from the
convergence of Fourier series to f(z) in —7 < x < 7. In other words, if
(7.4.4) is a Fourier series of f(z) with the Fourier coefficients (7.4.5) and
(7.4.6), then the Parseval formula is given by
L[ Ly 2 g2
= fa)de = Saf + ;1 (a2 +62). (7.4.29)

™
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We multiply (7.4.4) by 2 f(z) and then integrate the result from —7 to
7 to obtain

L/ f(x)dx = a 7 f(x)dx + Z {a_n ! f(x) cosnzdx
r ol ALY

™) . 2
bo [T :
+ — f(z)sinnzdz|. (7.4.30)
™ —T
Replacing all integrals on the right hand side of (7.4.30) by the Fourier
coefficients a,, and b,, gives the desired Parseval formula (7.4.29).
More generally, if f(z) and g(x) have convergent Fourier series in —7 <
x < 7 with Fourier coefficients a,, b, and c¢,, d, respectively, then the
following generalized Parseval formula holds
1 & apCo >
= f@)g(@)de = == + n; (anCn + bpdy,) . (7.4.31)

When f(z) = g(x), then (7.4.31) reduces to (7.4.29).

7.5 Generalized Zeta Function

Another generalized zeta function is defined by

C(s,u):Zﬁ, v#0,—1,-2,---, Res> 1. (7.5.1)

n=0

It can also be defined by the integral as

1 o0
((s,v) = —/ t*"te "' (1 —eH7ldt, Res>1, Rev > 0.
)= 55 | (1-e)

(7.5.2)

When v = 1, the generalized zeta function (7.5.1) reduces to the or-
dinary zeta function (7.2.2), and the integral formula (7.5.2) reduces to
(7.3.72). For more information and properties of the generalized zeta func-
tion, the reader is referred to Erdélyi et al. (1953, 1955).

We close this section by briefly mentioning the zeta function for more
than one variable. Almost more than thirty years after his great discovery of
the zeta function of one variable, Euler in 1775 introduced the zeta function
of two variables s and r defined by

= Y (753)
n>m>1
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where s > 2 and r > 1. Euler simplified his definition by putting n = m so
that

SO p— (7.5.4)

n>m>1 nsm’ ’
so that
C*(s,7) =C(s,7) + (s + 7). (7.5.5)
The product of two zeta functions ((s) and {(r) gives the identity
((s)(r) = (Z %) <Z ni> = (5 + )+ (547 (156)
n=1 n=1
Combining (7.5.5) and (7.5.6) yields
C(s)¢(r) = ¢ (s,7) + ¢ (r,5) = C(r + s). (7.5.7)
Euler also obtained the particular identity
¢(2,1) =<¢(3) (7.5.8)
and then a general identity
C(s, 1)+ (s =1,2)+---+((2,s = 1) =((s + 1), (7.5.9)
2(s—1,1) = (s—1)¢(s) = > C(s)¢(s — 7). (7.5.10)
2<r<s—2

Making reference to Hoffman (1992) and Varadarajan (2007), we close

this section by stating the definition of ¢ (s1, 82, -, sx) of k variables as
1
$1, 80, ,8k) = B — 7.5.11
Clonserm) = 0, g o) o4y
n1>nz>- N
where s, > 1, r=1,2, ---, k.
A few identities for ((s1,s2, -, Sx) have been proved. In recent years,

the zeta function of several variables and their properties have received
considerable attention with several conjectures. However, the progress is
relatively slow.

7.6 Applications of the Zeta Function to Mathematical
Physics and Algebraic Geometry

In the previous section, we have cited several remarkable applications of
the zeta function to number theory and analysis. First, the Euler product
formula played a central role for further understanding of the distribution
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of primes. Second, the zeta function has extensively been used to find the
exact or approximate sum of many important numerical series. The zeros
of the zeta function have also been closely associated with the eigenvalues
of some random Hermitian matrix in quantum physics. David Hilbert once
conjectured that the zeros of the zeta functions were distributed like the
eigenvalues of certain types of random Hermitian matrix. In the physics of
large nuclei, the eigenvalues of the same kind of matrix correspond to the
energy levels of the nucleus (protons and neutrons). Conversely, random
Hermitian matrices are successfully used to approximate the energy levels
of large nucleii such as uranium, where the large number of protons and
neutrons makes it almost impossible to explicitly model the nucleus.
Eugene Wigner (1902-1995) derived the distribution of energy level dif-
ferences. In early 1970s, H. L. Montgomery derived a simple correlation
function for two zeros of the zeta function and then Freeman Dyson rec-
ognized that this function is the two point correlation function for the
distribution of eigenvalues of an N x N random Hermitian matrix given by

p(z)=1- (Si“”)Q. (7.6.1)

T™r

He also recognized that foap(a:)da: represents a function of « which can
be used in modeling energy levels in quantum chaos. In 1973, based on
extensive computations by Andrew Odlyzko at Bell Laboratory, it has also
been shown that there is an excellent agreement between the distribution
of the zeros of the zeta function and the eigenvalues of some matrix, and
for higher order correlation functions. Thus, it seems that the zeros of
the Riemann zeta function are represented by the eigenvalues of certain
particular Hermitian matrix. This shows a kind of computational proof of
Hilbert’s conjecture made almost one hundred years ago.

In addition, the zeta function is used to represent a partition function in
statistical physics. Given the energy states Fy, Fs, F3, --- of a number of
particles, many physical properties of a statistical system can be described
by the following partition function

P= f: exp (—kE—j’Z) : (7.6.2)

n=1
where k is the Boltzmann constant, and T is the absolute temperature of
the system. Setting F,, = (kT)slnn, n=1,2, 3, ---, it turns out that

P=>Y" ni = ((s). (7.6.3)
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Thus, the zeta function represents a particular partition function of a sta-
tistical system.

It is a well known fact that renormalization in physics is in some sense
an extension of Euler’s method of summation of divergent series. Divergent
series often arises in some problems in statistical physics and quantum field
theory. If a value is assigned to a divergent series in some sense, this value
often agrees remarkably well with experimental observations. This strongly
support Euler’s method of determining a value of a divergent series so that
the divergent series becomes a useful entity.

For example, the trace of an infinite identity matrix [ is the sum of its
all diagonal elements, so that

tr(I):1+1+1+-~-:n1ergon:oo. (7.6.4)
In order to assign a suitable value to the trace of I, we can use the zeta
function defined by (7.2.2) so that ((s) = Y_,-, n~* for a real or complex
s. In particular, when s = 0, the value of the zeta function is

C0)=1+1+1+--o0. (7.6.5)

Thus, the renormalized value of the trace of the matrix I can be defined by

tr(Dren = C(0) = —%. (7.6.6)
Thus, a negative number is assigned to a divergent infinite series in order to
justify some experimental observations in physics. This is a very surprising
result in mathematics and physics.

In 1940, André Weil proved that the zeta function of a smooth projec-
tive algebraic curve defined over a finite field satisfies the analogue of the
Riemann Hypothesis. In 1949, he conjectured that such a result should be
true for the zeta function of smooth projective varieties of any dimension
defined over finite fields. Thus, the zeta function is found to occur in al-
gebraic geometry and has a possible link in the solutions of some major
problems in algebraic geometry.

Finally, we conclude this chapter by adding a very recent truely ex-
traordinary breakthrough in the work of Green and Tao (2008) involving
infinitely many primes in the arithematic progression (7.3.13). They proved
that for every n, there are infinitely many n-term arithematic progressions
of primes, that is, a, a + h, -+, a + (n — 1)h are all primes. They are
also interested in finding an approximate formula for the number of n-term
arithmetic progressions of primes and its extension to the number of primes
in polynomials.
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Chapter 8

Euler’s Beta and Gamma Functions
and Infinite Products

“No mathematician ever attained such a position of undisputed
leadership in all branches of mathematics, pure and applied, as
Euler did for the best part of the eighteenth century.”

André Weil

“Of the so-called “higher mathematical functions,” the gamma
function is undoubtedly the most fundamental.”

Phillip J. Davis

8.1 Introduction

Historically, around 1729, Euler expanded (1 — )™ by binomial theorem
for an integer n and obtained
1.23.---n

/0 e (1 - e)tde = (m+1)(m+2)---(m+n+1)

where m is an arbitrary number. His idea was to isolate the product 1, 2,

(8.1.1)

3, ---, n from the denominator and then find an expression for n! as an
integral. With formal manipulation of (8.1.1), Euler derived an integral for
n! in the form

1
n!z/o (—logz)" dx. (8.1.2)

Thus, the above two results (8.1.1) and (8.1.2) led Euler to discover the
beta and the gamma functions and to study their basic properties. From
the correspondence with Christian Goldback in 1729, Euler first generalized
the factorial function and introduced the Fulerian integral of the second
kind in 1730 which represents the Fuler gamma function.

235
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8.2 Euler’s Beta and Gamma Functions

The Eulerian integral of the first kind represents the Euler beta function,
B(x,y) which is defined by

1
B(z,y) :/0 "t -t tdt, x>0, y>0. (8.2.1)

The beta function has many simple but interesting properties such as
B(z,y) = B(y, z), (8.2.2)
B(z,y)B(z +y,z) = B(y,2)B(y + z,2). (8.2.3)

Substituting ¢t = (1+s)~! in (8.2.1) gives an alternative form of B(z,y) by
an infinite integral as

> s¥7lds g7 lgs
B = —_— = —_— . 24

Putting t = cos? § in (8.2.1) gives

/2
B(z,y) = 2/ cos?* ™10 sin® 1 9 dg. (8.2.5)
0
When m and n are nonnegative integers,
(m—1)!(n —1)!
B(m,n) = ————+~ 8.2.6
(m,n) (m+n+1) ( )
Several important results are given below without proof.
By =1, B(LL)= (8.2.7)
1) =1, 55) =™ 2.
Bla,y) = (——1) Bz —1,) (8.2.8)
7y - T + y _ 1 7y ) M
1+2 1—-2 T
B< 5 >—7rse6(7), 0<z<l. (8.2.9)

Euler defined the gamma function, I'(z) by an infinite integral in the
form

F(z):/ t*"le~tdt, Rez > 0. (8.2.10)
0

t

Putting et = u gives an alternating form of I'(z) as

I'(z) = /01 (—Inw)* " du. (8.2.11)
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For integral values of z = n + 1, result (8.2.11) gives
1
'n+1) = / (—Int)" dt. (8.2.12)
0

It is important to note that I'(z) is analytic for Rez > 0 and appears
frequently in expressions for the asymptotic analysis of differential equa-
tions. However, there is no algebraic differential equation for the gamma
function which was proved by O. Hélder and hence, it is called a transcen-
dental function. This is somewhat similar to the transcendental numbers
e, 7, v which does not satisfy any algebraic equation.

Integrating (8.2.10) by parts yields the relation

o0

I'(z) = [—e*ttzfl};o +(z— 1)/O e~ 2dt
=(z—1I'(z—-1).

Replacing z by z + 1 gives the fundamental recurrence relation
T(z+1) =2T(2). (8.2.13)
Hence, for integral values of z = n gives
P(n+1)=123.--- .n=nl! (8.2.14)

This shows that the gamma function is a generalization of the factorial
function. Further, the relation (8.2.13) can be used to continue analytically
I'(z) to values of z for Rez > 0.

Another equivalent form of the gamma function for real z = x can be
obtained from (8.2.10) by the change of variable t = u? in the form

I(x) = 2/ exp (—u2) u?*tdu, z > 0. (8.2.15)
0

Putting x = % in (8.2.15) leads to the following formula discovered by Euler

in 1730
T (%) = 2/ e du=2- */7% =T (8.2.16)
0

In his letter to Goldback in 1729, Euler gave another alternative defini-
tion of the gamma function in terms of a limit in the form

x

nln
r = lim I, =1l . 8.2.17
It also easy to check that
Tz +1)= — 2T, (2). (8.2.18)

n+z+1)
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There is a fundamental relation between the beta and the gamma function
given by

I'(2)I(y)
B(z,y) = =29 8.2.19
(@) = Fips (5.2.19)
This follows from (8.2.10) that
F(x)I‘(y):/ e*ttIfldt/ e *s¥~lds. (8.2.20)
0 0

Also, T'(x) is uniformly convergent for all real z in a < z < b, where
0 <a<z<b< oo and hence, I'(x) is a continuous function of z for all
x> 0.
Introducing polar coordinates by v/t = rcosf and /s = rsiné with
p =12, result (8.2.20) becomes
/2

I(x)(y) = 2/ e_pp‘"”y_ldp/ cos®* 1 0 sin?Y 1 9 db.
0 0
Substituting « = sin® # in the above integral and using (8.2.5) gives
[(@)(y) =T (z +y) B(z,y).
Both the gamma and beta functions are related to the Laplace transform

and its convolution property (for details, see Debnath and Bhatta (2007)).
The Laplace transform of a function f(¢) is defined by

F(s)=£{f)} = / e stf(t)dt,  Res>0. (8.2.21)
0
Thus, it follows from (8.2.21) that

e{t" 1} = / e St dt = Fs(f). (8.2.22)
0

On the other hand, the convolution of f(¢) and ¢(t) is defined by

/ f@—m7)g(r)dr = / gt —7)g(r)dr. (8.2.23)
0
The convolution theorem in the Laplace transform theory asserts that

L{f () xg(t)} = F(s)G(s) = £{f (D)} £{g(1)} - (8.2.24)

Or equivalently,

ft)*g(t) = £ {F(s)G(s)}. (8.2.25)
So, it follows that

t
/ (- T)'qﬁ1 dr = t* s tv! (8.2.26)
0
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where the integral in (8.2.22) defines the beta function B(z,y) when ¢ = 1.
With f(t) = t*~1, g(t) = t¥~ !, we obtain
I'(x) I'(y)

z{tH}:s—I and £{g(t)} = o (8.2.27)

It follows from the Laplace convolution theorem that

/ot e (R o e {M . F(y)}

:r@mst4{8iy}
_ T@TW) vy
ek areen LA (8.2.28)

Putting t = 1 in (8.2.28) leads to the result (8.2.19).
Euler also proved the following general refiection formula

Bz, 1—z)=T(2)I'(1 —2) =

0<z<1 (8229)

sinmz’
Using logarithm differentiation of (8.2.29) with respect to x gives
M) I'd-z)

I(z) T(1-x)

= meot . (8.2.30)

In modern notation, the Euler definition of T' (1 + m) for positive real
number m is given by

n!
Ftm) = o e T2 ()

He then wrote another form
1.2m gl—m gm nt=m(n 4+ 1)™

L(1+m) = lim CESR TS R (8.2.32)

(n+1)™. (8.2.31)

The Euler universal constant «y is defined by

1 1 1
v = lim 7, = lim (1+—+—+'-'+E—log(n+1)>,(8.2.33)

with the numerical value
v =0.5772156649015329 - - - . (8.2.34)
Since log (n + 1) = >j_, log (&), we can write (8.2.33) as

1 1 - E+1
14+ 4o =] = 1 -
(+2+ +n) ;og< k)

v = lim
n—oo
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Then
) 1 1 - k41 .
nllrr;oexp[{—z<1+§+---+E>}+zkz_llog<7) (8.2.35)
Since
1 . z
exp[ (1+2+ >}—Hexp( E)
k=1
k41 S (B
and ex lo =
o[ es ()] - 11 ()

result (8.2.35) can be expressed in the form

nlingo]ﬁ [(1 n %) exp (—%)] = exp (—72). (8.2.36)

If Re(z) > 0, Euler’s infinite product representation of T'(z) is

(z) = % ﬁ [(1 + %) (1+ %)1] . (8.2.37)

[<1+%>2 (1+%)1] .

To prove this result, we first show that

nln 15
li =-
ningoz(z+1)(z+2)---(z+n) ZH

" (8.2.38)
This follows from the fact that
n!(n+ 1)
z+1)(z4+2)---(2+n)
n! 2% 3% 45 (n+1)°

TG+ )(E+2) - (etn) 1727 3T g2

- k E+1\~ - z\ ! 1\*
:k_l[ z+k>'<T)]:g(HE) (HE) . (8.2.39)

we take the limit (8.3.39) as n — oo and divide by z # 0 so that (8.2.38)
follows immediately.
We next show that

I'(z) = lim <1 - 3) t*~ldz. (8.2.40)
0 n
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Putting ¢ = nu in the integral in (8.2.40) gives

n n 1
/ (1 _ E) gy — n/ (1 - u)" u*Ldu. (8.2.41)
0 n 0

Integrating the integral on the right hand side by parts yields the reduction
formula

1 1
/ (1—u)" v tdu = 2/ (1—u)" " u?du
0 0

z

which is, by iteration,

1
:E.n 1.” 2 1 /uz—i-n—ldu
z z4+1 z+42 z+n—-1J
n!

2(z+1)(z+2)-(z2+n)
Consequently, result (8.2.41) becomes

/On <1 B %)ntZ%Zt - z(z + 1)(zT—L|—'Z; (z4+n)

so that the limit of this as n — oo is

z

" t\" nln
I'(z) = lim 1——) #'dt= lim

Using the definition of I'(z) and writing

n t n
’F(z) — lim (1 - —) tz_ldt’
0 n

[ele] n t n
= / e t* 7 dt — lim (1——) tZ1dt‘
0 n—o0 Jo n
: * —tyz—1 " 3 " z—1
= | lim {/ e ‘'t dt—/ (1——) t dt”
n— o0 0 0 n
n t n [ele}
= | lim [/ {et— (1——) ]tZIdt+/ ettzldt”,
n—oo 0 n n

it turns out that both integrals tend to zero as n — oo.
Thus, the Euler formula (8.2.37) follows from (8.2.38) and then, we can
write the formula as

ore = IT[(13) ()]
e L[ 3) e (D D) )
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which is, by (8.2.36),

z

=exp(—vz) nlingo ﬁ {(1 + %)71 exp (E)} . (8.2.42)
k=1

Inverting each member of (8.2.42) yields the celebrated definition of
{T'(2)} " due to Weierstrass in the form

I‘(lz) = zexp (7z) ﬁ (1 + %) exp (—%) . (8.2.43)

This is a famous example of a cannonical product formula of Weierstrass

and it defines an entire function with simple zeros at z = 0, —1, =2, ---.
So the limit in (8.2.38) exists for all z # 0, —1, —2, ---, and defines I'(z)

as a meromorphic function with simple poles at z =0, —1, —2, ---. Thus,
result (8.2.43) gives the Euler reflection formula as
1 9 T 22 z
_ = — 1—-— ) =——si . 8.2.44
T (=) z }:[1 ( n2) _sinmz ( )

Or, equivalently,

P (-2) = - (=), (8.2.45)

zsinmz
which is, due to (8.2.13),
T

T()0 (1 —z) = (8.2.46)

sinz
This is an equivalent form of the Fuler celebrated refiection formula discov-
ered by Euler in 1771 and can provide us with a shortcut formula for numer-
ical computations. Writing (8.2.46) as F(z) =sinmzI'(z)[' (1 —2) =7 =0,
it can be shown that F'(z) = 0 throughout the complex plane. Thus, when
z= %, 2 (%) = 7 and hence, T’ (%) = +/7. But the integrand in the def-
inition (8.2.10) of the gamma function is positive when z = % and hence,
I'(3) = /7. Using the result, we can compute the I'(z) at = = +1, £3,
i%, ..

The Weierstrass factorization formula (8.2.43) shows that {1/T'(z)} is
zero for z =0, —1, —2, - - -, and was the starting point how functions other
than polynomial can be factorized. There were other similar factorization
formula such as the product identity for the sine function discovered by

Euler in 1748:

S 2
sinmz =z [] (1 - 2—2) . (8.2.47)
n
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Although the factorization of polynomials is mainly an algebraic problem,
but the extension to other functions such as the sine or the cosine which
have infinite number of zeros required for the systematic development of
a theory of infinite products. In 1876, Weierstrass successfully developed
an extensive theory of factorization of other functions which included as
special cases of these well-known infinite products, as well as of doubly
periodic elliptic functions.
Differentiating (8.2.10) with respect to z gives

) iy = / =1 (log t) e~*dt (8.2.48)
dz 0
so that it leads to
(1) = / e " (logt)dt = —, (8.2.49)
0

where v is the universal Euler constant given by (8.2.33).
The Euler gamma function is known to satisfy the multiplication formula
of Gauss and Legendre

n—1
1—

I'(nz) = (27T)(Tn) n"eTs H <z + %) , n=23,---.(8.2.50)

k=0
In particular, when n = 2, (8.2.50) gives the Legendre duplication formula

2z—1

N

Other formulas satisfied by the I'-functions include

% _ ewf[() (1 + H%) exp (-ﬁ) , (8.2.52)

(@) % - ﬁ <1 + ﬁ) exp <_3; i/_ n) : (8.2.53)

n=0

T (22) = T'(z)T (z + %) . (8.2.51)

where v is given by (8.2.33) and «(z) is the logarithm derivative of T'(z)
given by

¥(o) = 4 108T (@) = [ -

.2.54
. (8.2.54)

The function ¥ (z) is now known as the digamma or psi function which sat-
isfies the identity 1/(z+1) = 1(z)+ L. The function ¢(z) is a meromorphic
function with simple poles at z = 0, —1, —2, --- whose series expansion
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follows from the general expansion due to a great Swedish mathematician,
Gosta Mittag—Leffler (1846-1927) in the form

o0

WD) =1+ (=D Y

1) (ztn) (8.2.55)

In addition, we obtain

exp (yy(z)) = exp (—vy - %) ﬁ exp [ﬁ} . (8.2.56)
1

ne
We next use Laplace’s method of asymptotic expansion to obtain the James
Stirling approzimation formula for the function, T'(x 4+ 1) when = > 1.
We use the definition (8.2.10) and rewrite it in an integral form to apply
Laplace’s method as follows:

MNz+1)= / e 'rdt = / exp (zlogt — t) dt,
0 0

which is, due to t = z7,

= gt / exp [z (logT — 7)] d,
0

which is the appropriate form used in the Laplace method to find the asymp-
totic value of the integral for large x.

Writing f(7) = log7 — 7, f/(r) = 7' =1 and f"(r) = —% < 0.
So, f(7) has a local maximum at 7 = 1. We next use the Taylor series
expansion of f(7) as

1og¢—¢:10g[1+(7—1)—1—(7—1)]:—1—%(7—1)2+---,

for |7 — 1| < 1, and extend the limits of integration to obtain

Mx+1) ~ xl’Lze_‘r/

— 0o

o0

1
exp (—§xa2) da as x — 00,
which is, due to y = ay/,

o 1
D(z+1) ~a*T2e / exp (‘ayQ) dy

= V212" 2e® as z — oo. (8.2.57)
Or, equivalently, when z = n
nl ~\2rni e, n — oo. (8.2.58)

This is the celebrated Stirling formula for the factorial function, and the
asymptotic formula (8.2.57) provides a good approximation for the gamma
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function for = > 2. However, very accurate asymptotic approximations
are more useful in modern numerical computing. We discuss the asymp-
totic expansion of the gamma using another famous Euler’s result, the
Euler—-Maclaurin Summation Formula. In 1732, Euler stated the “Fuler—
Maclaurin” formula which was also independently discovered by Euler and
Colin Maclaurin in the period of 1732-1742. For a function f(x) with con-
tinuous derivative of all orders up to and including (2m + 2) in 0 < z < n,
then the sum >, _, f(k) is given by the Euler-Maclaurin summation for-
mula

> 1) = [ s+ 31500+ o)
k=

B
n Z 2k [ FERD () — f@D )] £ R, (8.2.59)
where By are the Bernoulli numbers, and the remainder term R,, is

! ) / ntmH(t)f(QmH)(t)dt. (8.2.60)

Ry = ———
2m+1)! Jo

In its simplest form, this summation formula for a function f(z) with a
continuous derivative in 0 < z < n is

~ [" s+ s+ sl [ (-1 3) 70a

(8.2.61)

where [t] is the greatest integer function.
With f(z) = Inz, and f®(z) = (=1)**' (k. —1)!z~*, the Euler-
Maclaurin summation formula gives the asymptotic expansion for Inn!:

1 1 - Bak —(2k+1)
Inn! ~ <n+§>lnn+§ln(2w)—n+27)n .(8.2.62)

29k (2 — 1
Or, equivalently,
nl ~ V21 n I e e, (8.2.63)
where
By 1 By 1 11 1 1
51 B8 1 _11_ 11 2.64
)=t E Tt TR T om (8.2.64)

Expanding the exponential e”(™ as a power series, result (8.2.62) gives

1 1 1 139 1
|~ V21 nnts 14— =2 4] (8.
n Tn" T ze” —|— —|— 588 72 51840 o3 + (8.2.65)
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This asymptotic expansion seems to be very useful for large n, but
the series is not convergent because the Bernoulli numbers fluctuate very
rapidly. However, (8.2.65) is valid for all n = & > 0 and hence, using
['(z) = L1 T(2+ 1), we obtain the asymptotic expansion of I'(z) for large z:

s+l 1 1 1 1 139 1
Do)~ Vamam e L g 2 5 3 " s 8 T
(8.2.66)

In recent years, considerable attention has been given to the asymptotic
expansion of the gamma function and the rate of convergence by several
authors including Lanczos (1964), Karatsuba (2001), Shi et al. (2006) and
Schmelzer and Trefethen (2007). In particular, Karatsuba (2001) reported
one famous asymptotic result due to Ramanujan for x > 0:
1
1 6
D(z+1) ~VTate ™ [8x3 +42% + 2+ g h@| . (8.267)
where h(x) is an increasing function of z in 1 < z < oo with A(1) =

(e%/m3) — 13~ 0.0112 and h (00) = 5.

Using Euler’s definition (8.2.32) and putting m = % we obtain
3-
r
( ‘/— \/ 3/2) 5/2 (7/2)
2-4 4.
f = 668 (8.2.68)

4 3355 77
This is the celebrated Wallis product formula for 7.

John Wallis discovered this formula in 1655 by a different method as
part of his work on finding the area of a circle.
This formula can also be derived from the Euler infinite product (8.2.47)

for the sine function. When z = 3 is substituted in (8.2.47), we obtain

2 _ 1°—°[ <1_%> _ 1"—"[ (2n —1)(2n +1)
™o 4n ot (2n)(2n)
1-3 3-5 5.7

—2'2'm'ﬁ"'. (8.2.69)
This can be rearranged to obtain the Wallis formula (8.2.68) for 7.

With the aid of the Mellin transform, we can derive the full Stirling
approximation of the gamma function of all orders together with three
constants involving the zeta function. Thus, we next use the Euler product
representation for the gamma function in the form

D(z+1)=e " ]O_O[ (1 + %)_1 exp (%) . (8.2.70)

n=1
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We next take logarithm both sides of (8.2.70) and expand the logarithm
in powers of z to obtain

1nF(x+1)=—7x+i{%+i%(—%)S}, (8.2.71)

S

which is, by changing the order of summation,
InD(z+1) = —yz + Z ((s (8.2.72)

Replacing the sum in (8.2.72) by the Mellin transform and then evaluating
the Mellin integral by the theory of residues, we obtain the full stirling
asymptotic expansion in the form

1
InT(z+1) ~ (x—i— 5) Ine—z+Inv2rw

1m_1) L(m)¢(m + 1)

m

where the summation is taken over only odd integers m, and {(m) — 1 for
large m.

8.3 Applications of the Euler Gamma Functions

The equation of the n-dimensional sphere (or ball) of radius r with center
at the origin is

P2t =12, (8.3.1)

where (21,22, -, x,) represents a point on the sphere and n > 2.

The volume, V,, and the surface area, .S,, of a sphere of radius r in n-
dimensional space, R™ can be expressed in terms of the gamma function
(see Debnath and Bhatta (2007)) as

Ay eyt
r(1+3%) r(3)
Evidently, dV;,, = S,,. In particular, when n = 2, 3, ---, Vo = 7r2, Sg =
dVg—?ﬂ'r Vi = 3777“ S3 = dV = 4mr?, ‘/4—%71'27‘ S4—dV4=27T
Vs = Exr®, S5 = dVs = Sx?rt, ... The volume and the surface area of

an even-dimensional unit bphere (r =1) are given by

n ﬂ.n—l

T
Vo, = Tl and Sz, = 27 - m7 (8.3.3)
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so that the sum of all volumes as well as the sum of all surface areas are

0o 0o n 00 o) n—1
;V?”:Z %:e” and Zngn:%erh:QWe”.

n=1

(8.3.4)

The complex gamma function occurs in the solution of mathematical
problems in atomic, molecular and quantum physics. In particular, the
radial wave functions for positive energy states in a Coulomb field satisfy
differential equations involving the Euler complex gamma function. The
gamma functions also involve in formulas for scattering of charged parti-
cles, for the nuclear forces between protons, in Enrico Fermi’s (1901-1954)
approximation formula for the probability of S-radiation and in many other
problems. In view of wide spread occurrence of the gamma function in
pure and applied mathematics, and the existence of the classical Stirling’s
asymptotic formula for the gamma function, the modern emphasis is to de-
velop more sophisticated numerical and asymptotic methods for accurate
computation of gamma functions in the complex plane.

8.4 Euler’s Contributions to Infinite Products

Euler’s research on infinite products and infinite series started as early as
1730. Even though at that time the concept of convergence of series was
not available, Euler showed a tremendous interest in the subject. Euler
knew that there are an infinite number of roots z = 0, 7, +27, - - -, +nm,

- of the equation sinz = 0 and factorized sin z as infinite product in the
form

: - z?

Taking logarithms gives, for 0 < z < m,

(logsinz —logz) = ;il {log (1 - %) + log (1 + %)} . (8.4.2)

Differentiating and then replacing x by 7z leads to the remarkable partial
fraction expansion

1 1 1
trr = — - ) O<z <l 8.4.3
TeorTE x+z(n—|—x n—x) * ( )

n=1
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He also knew that sinz, cosx have a power series representations

{E3 {I?5 {I?7
smx—x—y—i———ﬁ—i—---. (8.4.4)
{EQ {I?4 LC6

Equating the coefficients of 2® and z° in equations (8.4.1) and (8.4.4), Euler
derived the formulas for numerical series

1 1 w2 1 1 m
1 =+ =— 1+ =++=— .4.6ab
+22+3+ R +24+34+ 90 (8.4.6ab)
He generalized these results to obtain the general series (7.2.2) to define
the zeta function ((s) in around 1740.
We put z = 7/2 on both sides of (8.4.1) to obtain
2 o 1 o (4n? —1)
z 1—— )= A
=11 W) 115

ﬁ 2n—1 2n—|—1) 1.3 35

ot
-3
-
Nej

T 22 44

>
00

This can be reorganized in the form

T 22 44 66 88
z L 22 4.
2 13 35 57 7.9 (84.7)

This is one of the celebrated Wallis product formulas for 5 which was
proved by the British mathematician John Wallis in 1655 using a different
method as part of his work on finding the area of a circle. However, in the
Introductio, Euler discovered the Wallis formula (8.4.7) from the infinite
product representation (8.4.1) of sinz. One of the great mathematician,
André Weil said that this is “One of Euler’s most sensational early dis-
coveries, perhaps the one which established his growing reputation most
firmly”.

Similarly, cosz can be written as an infinite product in the form

cosT = 1_x722 . 8.4.8
(5 5er) 849

Euler obtained the infinite product expansion of sinz and cosx from
the identity

(8.4.9)
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Putting z = (1 + £) in result (8.4.9) becomes

I R 1

et ) (2m sin 57~
8.

~~ N
=

10)

In the limit as m — oo, this reduces to

%(e —e H( n2ﬂ2>. (8.4.11)

Or
. - z?
sinhz = xg (1 + m) . (8.4.12)
Replacing x by iz in (8.4.8) gives the product formula
i 422

All of the above results remain valid for a complex variable z = x + iy.
Weierstrass proved a remarkable theorem which guarantees the existence
of infinite product expansions of a rather broad class of analytic functions
of z. It has also been shown by him that the divergent infinite product

2 (1+ %) (1+ %) (1+ 37) : (8.4.14)

can be made convergent by multiplying each factor by an exponential factor.
Thus, the infinite product

{0 2) e {1 ) ow # H{(1e 7)o

(8.4.15)

is absolutely convergent.
If f(z) denotes the limit of the absolutely convergent product

and f(—z) that of
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then

n2m? z

f(2)f(=2) = ]O:O[ (1 z ) _ sz (8.4.16)

Thus, it follows that

o 2
logsinz = log z + E log <1— j 2).
n?m

n=1

Differentiating this result with respect to z yields

1 1 1 1 1
cotz = -+ + + + +---, (8.4.17)
z z+mwm z—T z+2r  z-—27

1 > 1
=—-+42 —_—. 8.4.18
2 + ; (22 — n212) ( )
The series in (8.4.17) is semi-convergent, and that in (8.4.18) is absolutely
convergent except for z = 0, £x, £2mx, - -- for which values of the series is

divergent.
Similarly, it follows from differentiation of logartithms of the infinite
product formula (8.4.8) for cos z

422 422 422

that
1 1 1 1
—tanz = — + — >+ 3=+ =T, (84.20)
z+5 z-—35 z+ 7” z— 7”
or,
tanz = 82 OOE ! . (8.4.21)
= (2n—1)°n? — 422

The series (8.4.20) is semi-convergent, but (8.4.21) is absolutely convergent
for the values of z except for z = £7, :l:%”, cee

Using the formula cosecz = cot %z — cot z or cosecz = % cot z + % tan %z
and the series for the cotangents gives

(2 2 2 2 2 )
cosecz = | — + + + + + -

z z42r  z-—2m  z4+4m  z—4nw

1 1 1 1 1
—| - 8.4.22
<z+z+7r+z—7r+z+27r+z—27r+ ) ( )
1 1 1 1 1 1 1
= - - — + + — —
z z4+mwm z—mwm z+42m z—2n7 z+3m z-—3w

(8.4.23)
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1)"2
cosecz = — + Z n2 22 (8.4.24)
- e

Replacing z by (z + 37) in (8.4.23) gives

1 1 1 1
z+5 2—3 z+5 -5
Or,
)1 2n—1)
= 4.2
secz =4 E 2n—1 i (8.4.26)

When n is large, the series (8.4.26) has its general term tending to the value
(—=1)"~1(2n — 1)7L, hence the series is only semi-convergent.

Taking logarithms of the product formula (8.4.1) for sinz and (8.4.19)
for cos z yields

22 22
logsin z = log z + log <1 — —) + log ( —) + e (8.4.27)
92,2
422 422 422
log cos z = log 1_7r_ + log ~ 332 + log ~ = 4
(8.4.28)

Expanding the logarithms in (8.4.27) for |z| < = and in (8.4.28) for
z < G gives

sin z > 1 1 22"
log( 2 )——Z(lﬁﬁ-ﬁ‘f'"')mﬁ, (8.4.29)

n=0

e 1 1 22n22n
1ogcosz:—Z(12—n+3ﬁ+--->W. (8.4.30)

n=0

In view of the fact that
1 1 1

C(QTL) 12”4-2%4'3%4‘"‘

1 1 1 1 1 1 1
"\ e et ) tam \m tam T T

so that

1 1 1 227 — 1
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Consequently,

sin z "
log( ) Z m% 2 (8.4.33)

logcosz = — Z (2%7_1) ¢(2n) 2. (8.4.34)

2n
nm
n=0

Using the result (7.3.64), these results reduce to

log(sinz)_ {2&2__'_23@2__’_ 22n71& 521 +}
z

1 2! 2 4l n (2n)!
(8.4.35)
By 22 53 Bo 2* on_1 Bn 2%
1 =—|2——=4+2"—— 427 — e
08 oS { TCTIC I TIRE n @)
(8.4.36)

Replacing the Bernoulli numbers by their numerical values given by
(7.3.57) and (7.3.58) gives the series for the logarithmic sine and cosine in

the form
log (SH;Z) - - (% + 1’;40 + 2;; + o ) . (8.4.37)
logcosz = — (Z; + i—; + Z—Z +- ) (8.4.38)
And hence,
logtan z = logz + (Z; +%+g§;;+--->. (8.4.39)

Euler substituted z = (%Z) in (8.4.27) and (8.4.28) and then used
the following resulting numerical series to calculate logarithmic sines and
cosines upto twenty decimal places:

lo sin(m)—lo (m)—klo 1—m—2 +lo 1—m—2 +
& omn/ & 2n & 22 . n2 & 42 .n2

(8.4.40)

mm m? m?
log cos (%) = log <1 — 12—n2) + log <1 — w) 4+ (8.4.41)

He also obtained the following beautiful infinite products over only
primes p=2,3,5, ---:

> 1 6 p? ™ p’ m
P R - PV (8442
H( p2> m pr_[z<p2+1> 157 S \pt+1/ 105 R

p=2







Chapter 9

Euler and Differential Equations

“As the construction of the universe is the most perfect possible,
being the handiwork of an all-wise Maker, nothing can be met
with in the world in which some maximal and minimal property
is not displayed. There is, consequently, no doubt but that all
the effects of the world can be derived by the method of maxima
and minima from their final causes as well as from their efficient
ones.”

Leonhard Euler

“No mathematician ever attained such a position of undisputed
leadership in all branches of mathematics, pure and applied, as
Euler did for the best part of the eighteenth century.”

André Weil

9.1 Historical Introduction

Historically, differential equations originated immediately after the indepen-
dent discovery of calculus by Sir Isaac Newton and Gottfried W. Leibniz
in the seventeenth century. In his famous 1953 book Ordinary Differen-
tial Equations, a British mathematician, Edward Lindsay Ince (1891-1941)
stated the first discovery of solution of an ordinary differential equation by
Leibniz in 1675:

“Yet our hazy knowledge of the birth and infancy of the science of
differential equations condenses upon a remarkable date, the eleventh day
of November, 1675, when Leibniz first set down on paper the equation

1
dy = =y*
/yy Y

255



256 The Legacy of Leonhard Euler — A Tricentennial Tribute

thereby not merely solving a simple differential equation, which was in itself
a trivial matter, but what was an act of great moment, forging a powerful
tool, the integral sign.

The early history of the infinitesimal calculus abounds in instances of
problems solved through the agency of what were virtually differential equa-
tions; it is even true to say that the problem of integration, which may be
regarded as the solution of the simplest of all types of differential equa-
tions, was a practical problem even in the middle of the sixteenth century.
Particular cases of the inverse problem of tangents, that is the problem of
determining a curve whose tangents are subjected to a particular law, were
successfully dealt with before the invention of the calculus.”

Although Newton did relatively little work in the theory of differential
equations, he solved some ordinary differential equations in analytical form
in his Method of Fluzions of 1671. In fact, he classified ordinary differential
equations of the first order, then known as fluzional equations into three
classes:

Q) L=f@) o L=rpu), (9.1.1)

T T
where & and ¢ represent fluzions (or the rate of change of variables) of
fluents (variables) of x and y respectively.

(ii) % = f(z,y). (9.1.2)

The third class consisted of equations involving more than two variables
and they are now known as partial differential equations.

He also considered a large number of applications of fluxions to differ-
entiating implicit functions and to determining tangents of plane curves,
maxima and minima of functions, curvature of plane curves, and points of
inflections of plane curves. He also first derived the precise formula for the
radius of curvature, p(z) of a plane curve y = f(x) as

©2\3/2
p(z) = — = U+T) ? (9.1.3)
k() ]

At the same time, Newton obtained lengths of plane curves and areas of
closed curves. In mechanics, he formulated his law of falling body by the
first order ordinary differential equation for the velocity v in a resisting
medium and the law of cooling/heating for the temperature distribution
T'(t) of a function of time.

On the other hand, Leibniz first introduced the modern notation for
the first derivative, (dy/dx) or 3’ and the integral sign. In 1691, he first
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introduced a new variable v = (y/x) to solve a class of the first order
ordinary homogeneous equation of the form

dy Y

Z=f (;) , (9.1.4)
so that this equation reduces to a separable form. Indeed, he discovered the
method of separation of variables to solve first order homogeneous equations
and first order linear equations. In 1694, he showed how to reduce a linear
first order ordinary differential equation form

y' +p(@)y =q(z) (9.1.5)
to quadratures.

Following the work of Newton and Leibniz, the Bernoulli brothers Jakob
and Johann and Johann’s son, Daniel Bernoulli made some significant con-
tributions to differential equations with applications to mechanics. In 1695,
Johann Bernoulli first solved the first order nonlinear ordinary differential
equation what is now known as the Bernoulli equation

W@ =)y, nA0 L (9.1.6)

However, it was Leibniz in 1696 who showed that equation (9.1.6) can be
reduced to a linear equation by the substitution v = y'~". The Bernoulli
brothers formulated the brachistochrone problem dealing with the determi-
nation of the curve of fastest descent in 1696 and reduced the problem to
the first order nonlinear equation

y(1+y?)=C, (9.1.7)

where C' is a constant. Newton also solved this problem in 1697.

In 1696, Johann Bernoulli considered the isoperimeter problem or the
problem of determining plane curves of a given perimeter which enclose a
maximum area. In 1698, he also considered the problem of determining
a family of curves (orthogonal trajectories) which is orthogonal to a given
family of curves. In a letter to Leibniz in 1716, Johann Bernoulli formulated
a second order ordinary differential equation in the form

d’y 2y

dz? 2%’
and showed that the solutions represent three types curves including
parabolas, hyperbolas and curves of the third degree. In around 1724,
an Italian mathematician, Count Jacopo Riccati (1676-1754) made some
important contributions to differential equations in the form

d
F(y,y',y") =F <y,p,p d—];) =0, (9.1.9)

(9.1.8)
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where p =y’ so that the second order equation can be reduced to the first
order in p. In the early history of ordinary differential equations, the first
order nonlinear equation, now called the Riccati equation,

dy

i
received a great deal attention. If y = y; is a particular solution, the
general solution containing one arbitrary constant can be obtained through
the substitution y = y1 () + ﬁ, where v(z) satisfies the first order linear
equation

ao(z) + a1 () y + az(x) y?, (9.1.10)

dv
e + [2y1a2(z) + a1 (x)]v = —az(x). (9.1.11)
In particular, when az(z) = —1, the Riccati equation (9.1.10) becomes
d
ﬁ = ao(x) + a1 (z)y — y°. (9.1.12)

The substitution y = (u'/u) reduces (9.1.12) to the second-order linear
equation

u” —ai(x)u’ — ap(x)u = 0. (9.1.13)
The Riccati equation in the form
d
% +ay(x)y + as(z)y? =0 (9.1.14)
can be reduced by the transformation ¥ = v~ to the form
du
pt ay(z)u = ag(x). (9.1.15)

The general solution of this equation is

u(z) = Cel @@4de  pJ aa(@)de [ / ’ as(t) exp {— / al(t)dt} dt] , (9.1.16)

where C' is an arbitrary constant.

A British mathematician, Brook Taylor and a French mathematician,
Alexis Claude Clairaut discovered singular solutions of a class of ordinary
differential equations. A singular solution is truly a solution of the equation,
but it cannot be derived from the general solution by assigning a partic-
ular value of the arbitrary constant involved in the general solution. In
1734, Clairaut considered the differential equation, known as the Clairaut
equation in the form

y=pr+f(p), p=vy. (9.1.17)
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He obtained the general solution by differentiating (9.1.17) with respect to
x so that

dp
p=p+{z+f(p I (9.1.18)
This means that either
d
ﬁzO or z+ f'(p)=0

so that the first equation leads to p = 3’ = m and from the original equation
we have

y =mx + f(m), (9.1.19)

where m is an arbitrary constant. Thus, the Clairaut equation has the
general solution (9.1.19) which represents a family of straight lines. The
second equation = + f’(p) = 0 may be used together with the original
equation (9.1.18) to eliminate p so that it gives a new solution, which is
called the singular solution representing the envelope of the general solution
(9.1.19). Differentiating (9.1.19) with respect m leads to

z+ f'(m) = 0. (9.1.20)

Thus, eliminating m from (9.1.19) and (9.1.20) leads to a plane curve which
is the enwvelope. These two equations are exactly the same as the two
equations that gives the singular solution.

For example, the general and singular solutions of the differential equa-
tion

y:px+§, p=y (9.1.21)

are y = mx + -+ and y? = 4azx respectively and those of

y=pr+a*p?+02, p=y (9.1.22)
are y = mz + va*m? + b? and fl—z + z—j = 1 respectively, where m is an
arbitrary constant.

Similarly, the differential equation associated with a plane curve such

that the coordinate axes cut off from any tangent a constant length a is

149"y —ap)? =a®p®,  p=y. (9.1.23)
The singular solution of this equation is the astroid z2/3 + y2/3 = ¢2/3.

The nonlinear ordinary differential equation of the first order

Y%+ azy + by + cx? =0, (9.1.24)
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was investigated by G. Chrystal (1851-1911) in 1896. The parabola, 4by =
—abx? is a singular solution provided the coefficients of (9.1.24) satisfy the
condition a? + ab — 4c = 0.

Both Euler and Clairaut gave a method of finding the singular solution
from the differential equation itself, that is, by eliminating m from the
following equations

0
flz,y,m) =0, %f(x, y,m) = 0. (9.1.25)

Fuler was somewhat puzzled by the fact that singular solutions are not
included in the general solution. In his Institutiones of 1768, Euler formu-
lated a criterion for distinguishing the singular solution from a particular
integral. Subsequently, considerable attention has been given to the prob-
lem of the existence of singular solutions of ordinary differential equations
of the first order after the discovery and the basic work of Clairaut and
Euler.

Several other mathematicians including d’Alembert, Arthur Cayley, J.
G. Darboux and Lagrange made a systematic study of singular solutions
and their relationship with the general solution. Lagrange gave the geomet-
rical interpretation of the singular solution as the envelope of the family of
integral curves.

Since there exist a number of references where the reader may find an
adequate discussion of the theory of singular solutions, we simply review
a few salient features of the subject. We consider a first order differential
equation of the form

flz,y,p) =0, p=y. (9.1.26)

Then the partial derivative of this equation with respect to p gives the
equation

fo(z,9,p) = 0. (9.1.27)

These two equations (9.1.26) and (9.1.27) form a system from which p can
be eliminated in many cases so that the resulting equation F(x,y) = 0 can
be found to define the p-discriminant locus.

Differentiating (9.1.26) with respect to = gives

dp
fotpfy+frg =0, (9.1.28)
which is, by (9.1.27)
fat+pfy=0. (9.1.29)
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Thus, a necessary condition for the existence of a singular solution of
(9.1.26) is given by the set of three equations

[=0, Ip=0, fz+pfy=0. (9.1.30)

Eliminating p from (9.1.30) yields the singular solution F'(x,y) = 0.

Thus, the three equations (9.1.30) together with the condition f, # 0
are sufficient for the existence of a singular solution of (9.1.26).

Hence, the singular solution of Chrystal’s equation (9.1.24) must satisfy
(9.1.30), that is,

p?+apr+by+cx? =0, 2p4+ar=0, ap+2cx+bp=0. (9.1.31)
The first two equations of (9.1.31) gives
4by = (a* — 4c)2?, (9.1.32)

and the third equation in (9.1.31) is satisfied provided a? + ab = 4c which
reduces (9.1.32) to the singular solution

4by = —abz? (9.1.33)
provided b # 0 which is the condition f, # 0. If b = 0, the solution of the
original equation (9.1.24) degenerates into the parabola, 4y = —az?, and

there is no singular solution.

This chapter deals with major contributions of Euler to ordinary and
partial differential equations. This is followed by the calculus of variations
which is a new branch of mathematics effectively created by Euler in his
1744 famous book entitled Methodus inveniendi lineas curvas mazximi min-
imive proprietate gaudentes.

9.2 Euler’s Contributions to Ordinary Differential
Equations

Euler made many significant contributions to the theory of ordinary differ-
ential equations and developed new analytical and numerical methods of
solving differential equations with constant and variable coefficients. Many
of his papers on differential equations dealt with physical problems. Of
particular interest is his major work on the formulation of problems in
mechanics in terms of differential equations and his development of mathe-
matical methods of solving these equations. Lagrange once said of Euler’s
contributions to mechanics: “The first great work in which analysis is ap-
plied to the science of movement.”
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Euler first introduced the concept of an integrating factor and suggested
a general treatment of linear ordinary differential equations with constant
coefficients. He solved a class of first order linear equations in the form

b plaly = ala), (921)

by introducing the integrating factor

P [ / p(x)dx} . 9.2.2)

Euler also obtained the general solution F'(x,y) = C representing an im-
plicit family of plane curves, where C' is an arbitrary constant of the first
order ezxact ordinary differential equations in the form

M(z,y)dz + N(x,y)dy = 0. (9.2.3)

A necessary and sufficient condition that equation (9.2.3) is exact if %—Ay/l =

ON
Oz *

If equation (9.2.3) is not exact, then it is necessary to find a function
w(x,y) such that the expression

wlM(z,y)dx + N(z,y)dy] (9.2.4)

is a total differential d F'(z,y). When p has been found, the problem reduces
to a mere quadrature.

The major question which arises is as to whether or not the integrating
factor exists. It can be proved that under the assumption that the equation
itself has one and only one solution which depends on an arbitrary constant,
there exists an infinity of integrating factors. If the equation

1 [M (2, y)dx + N(z,y)dy] =0, (9.2.5)
is exact, the integrating factor u satisfies the relation
0 0
—(uM) = —(uN). 2.
5 (M) = 5 (u) (9.2.6)
Or,
oM ON ou ou
_— M— — N— =0. 9.2.7
a < oy Oz ) * Oy Ox ( )

Obviously, u satisfies a first order partial differential equation. In general,
it may not be easy to find the general solution of equation (9.2.7). However,
in many special cases, this equation has an obvious solution which gives the
required integrating factor pu.
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After his discovery of the concept of the integrating factor, Euler went
further and formulated classes of differential equations which admit of inte-
grating factors of given kinds. He also showed that if there are two different
integrating factors of a first order equation, then their ratio is a solution of
the equation. Both Euler and Clairaut played a major role in the develop-
ment of the theory and method of integrating factors.

Another major advance was made by Euler who solved by reducing
a particular class of the second order ordinary differential equations to
equations of the first order. Euler’s method involves in replacing x and
y by new variables v and v by the substitution z = €™ and y = ve",
where 7 is a constant to be determined. With a suitable choice of r and
a new variable w = Z—Z, the original second order equation reduces to the
first order in w and v. This method is fairly general in the sense that
many ordinary differential equations of order higher than the second can
be reduced to a lower order by similar methods. It may be appropriate to

recall Euler’s work on the Riccati differential equation

Z—Z +y% =ax". (9.2.8)
If one particular solution u is known, then the transformation y = u + %
produces an ordinary linear equation. If two particular integrals are known,
then the original equation can be reduced to the problem of quadrature.
In his letter to Johann Bernoulli in 1739, Euler gave a general treatment
of the homogeneous ordinary linear equation of the nth order with constant
coefficients in the form

any™ +an_ 1y Y+ a1y +ay =0, (9.2.9)

where ag, a1, -, a, are constants. He obtained the general solution by
a substitution of y = €™ so that m satisfies the auziliary equation of nth
degree

anm”™ + ap_ym™ '+ +aym+ag = 0. (9.2.10)

The n roots of (9.2.10) produce n particular solutions and then the general
solution can be obtained by adding n particular solutions each multiplied
by an arbitrary constant. He also discussed all possible cases involving
real distinct, real equal, complex conjugate and multiple complex roots of
(9.2.10). Thus, Euler completely solved a class of nth order homogeneous
linear equations with constant coefficients. Subsequently, he also gave a
method of solution of the nonhomogeneous nth order equating where zero
on the right hand side of (9.2.9) is replaced by a function f(z). His method
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was to multiply the nonhomogeneous equation by e™*dx, integrate both
sides and proceed to determine m so as to reduce the equation to one of
lower order.

In his subsequent work starting from 1740, Euler generalized the method
to solve the nth order Fuler (or equidimensional) equation with variable
coefficients in the form

an 2"y +ap_1 2"y 4t ayay +agy =0, (9.2.11)

where a,, a,—1, - -+, ag are real constants. This equation is often called the
Cauchy—FEuler equation. Using a trial solution y = 2™, where m is to be
determined, it turns out that m satisfies an auxiliary equation of degree n
in the form

Fm)=aymm—-1)---(m—n+1)+ap_1[mim—1)---(m —n+2)]

+--+am+ay =0, (9.2.12)
where F(m) is a polynomial in m of degree n. Thus, the functions ™1,
™2 ... x™n corresponding to roots mq, me, -+, m, of F(m) = 0 are

n particular solutions of equation (9.2.11). Hence, the general solution of
(9.2.11) can be determined by adding n particular solutions each multiplied
by an arbitrary constant. Euler also extended his method of solution for the
nth order linear nonhomogeneous Cauchy—Euler equation (9.2.11), where
zero on the right hand side is replaced by a function of x and then obtained
the general solution. In other words, the nonhomogeneous nth order Euler
equation of the form

> an 2" Ty (@) = fx), (9.2.13)
r=0
where a,, Gn_1, -++, ag are constants and a, # 0. The change of the

independent variable x = e, (z > 0) transforms (9.2.13) to the linear
equation of order n with constant coefficients

> an [D(D=1)---(D—r+1)]y= f(e"), (9.2.14)
r=0
where D = %. This can be solved by the usual methods including the

method of undermined coefficients, variation of parameters or the Laplace
transform method.
Beginning from 1753, Euler also considered a particular type of equation

in the form
dx dy
— 4+ Ly, 9.2.15
NodG (9:2.15)
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where X = aqz? + azx® + a0x? + a12 + ap and Y = aqy?* + asy® + asy? +
a1y + ap. He showed that its general solution has the form F(z,y) = 0,
where F(z,y) is a symmetric polynomial of degree 4 in x and y.

In particular, he solved the equation

dx dy

+ =0, 9.2.16
Vi—a2  /1—y2 ( )
to obtain a particular solution
sin~!'x +sin"ly =c, (9.2.17)
whose ¢ is an arbitrary constant.
It follows from equation (9.2.16) that
g Vi V-2 - y?) —ay
Vi-a2? /(1 -2?)(1-y?) —ay
= - (9.2.18)

Or,
<\/1—y2—1x7y> +y <\/1—x2—%> = 0.
x Y

Or, equivalently,

% (:r,\/l — 2 +yV/1 —x2) =0. (9.2.19)

This shows that equation (9.2.16) has also the solution

a1 =12+ yV1—a2=C, (9.2.20)

where C' is an arbitrary constant. Since the equation has only one distinct
solution, two solutions (9.2.17) and (9.2.20) must be related to each other
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in a definite way so that this relation can be expressed by C = f(c). If we
set = sinwu and y = sinv, then

u+v=c¢ and sinwucosv+sinvcosu= f(c)= f(u+wv). (9.2.21)
Putting v = 0, sinu = f(u) and hence, it turns out that
sinwu cos v + cosu sinv = sin(u + v). (9.2.22)

This is the celebrated addition formula for the sine function.

The mathematical method of variation of parameters for the three body
problem in celestial mechanics was described by Newton in his Principia.
He first treated the motion of the Moon about the Earth and then deter-
mined the elliptic orbit. Newton included the effects of the Sun or the
Moon’s orbit by considering variations in the later. In the Acta Erudito-
rum of 1697, Johann Bernoulli used the method of variation of parameters
to solve nonhomogeneous ordinary differential equations. In 1739, Euler
solved the second order equation

Y+ K%y = f(x) (9.2.23)

by the method of variation of parameters. This method was first used
by Euler in 1748 to treat mutual perturbations of planets, Jupiter and
Saturn and won a famous prize from the French Academy. Both Laplace
and Lagrange developed the method of variation of parameters for a single
nonhomogeneous nth order ordinary differential equation

L, (y) = an(x) y(") + an—1(2) y("_l) +-t+ar(x)y +ao(z)y = f(x).
(9.2.24)

The reader is referred to Ince’s (1953) book for a detailed analysis of the
method of variation of parameters. In short, it is necessary to find a fun-
damental set of solutions y1, y2, - - -, y, of the corresponding homogeneous
equation

Ln(y) =0 (9.2.25)

so that the general solution of (9.2.25) or the complementary function y.(x)
is given by

Ye(x) = c1y1 + coy2 + -+ + CnYn, (9.2.26)

where c¢q, co, -+ ¢, are arbitrary constants.
The method of variation of parameters involves the replacement of the
constants ¢, ca, -+ ¢, by functions wui(z), ue(x), -+ up(z). It is then
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necessary to determine the n functions ui(x), us(z), - -+ wuy(x) so that

yp(x) = ur(2)y1 (x) + uz(z)y2(z) + - - - + un(2)yn (), (9.2.27)

satisfies the nonhomogeneous equation

Ln(y) = f(2), (9.2.28)

where the coefficients a, () of %™ (z) is unity. It turns out that the set of
n functions ui(x), uz(x), -, u,(z) satisfy n equations so that they can be
determined. Thus, the solution y,(z) together with the solution (9.2.26) of
the homogeneous equation (9.2.25) is the general solution of the nonhomo-
geneous equation (9.2.24). In other words, the general solution of (9.2.24)
is

y(x) = ye(2) +yp(2) = (11 +c2y2 + - + cayn)
+ (wiyr + usys + -+ upyn) . (9.2.29)

After his discovery of the method of variation of parameters in 1774,
Lagrange successfully applied the method to solve many problems of ana-
lytical mechanics and mathematical physics. Subsequently, Lagrange and
Laplace wrote a large number of major papers and books on a wide variety
of basic problems of analytical mechanics and celestial mechanics. In his
masterpiece five-volume Mécanique céleste (Celestial Mechanics) published
in 1799-1825, Laplace presented his own complete work as well as major
theoretical and observational discoveries of Newton, Clairaut, d’Alembert,
Lagrange and Euler. These volumes represent his brilliant contributions to
the general principles of the equilibrium and motion of bodies with appli-
cations to the motion of the heavenly bodies, and the basic equations of
motion of Jupiter and Saturn. Indeed, he described almost complete math-
ematical solutions posed by the Solar System. It is a delight to include here
Laplace’s conclusion that “nature ordered the celestial machine for an ex-
ternal duration, upon the same principles which prevail so admirably upon
the earth, for the preservation of individuals and for the perpetuity of the
species.” With the improvement of the mathematical methods for solving
differential equations and development of new physical principles, math-
ematical scientists of the nineteenth and twentieth centuries made some
special efforts to obtain better results on many subjects of interest and on
the n-body problem and the stability of the Solar System.

The most simplest of all nonhomogeneous differential equations of the
nth order is

mn
% = f(z). (9.2.30)
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The process of integration n times in succession leads to the following:

dnfly x
= t)dt
s = [ e
dn—_Qy—/Idt/ng(t)dt—i—c(x—x)—Fc
2 . . 1 0 2
T T x (LC _ {IT())n71
y = dt dt--- fydt +cr———+---+cp, (9.2.31)
o o o (n - 1)'
where xg is a constant and c1, co, -+, ¢, are arbitrary constants. The

multiple integral in (9.2.31) can be replaced by a single integral so that the
general solution of (9.2.30) is given by

1 v = (x — x0)" !
= — —t)" t)dt — 4ty (9.2.32
y (n_l)!/wo(a: O f(t)dE+ (=1 +---4c ( )
where the first integral represents the particular integral
1 v 1
= — —t)" t)dt 9.2.33
wle) = gy [ @07 (9:2.33)

which satisfies (9.2.30) as follows:
W — i | @0

dz (n=2)! /o,
dnflyp v
d.’L’n71 - - f(t)dt
and finally,
A"y,
T f).

Euler also developed a new method, known as the FEuler transform
method, to solve a second order ordinary differential equation in the form

(ag2® 4+ a1 + ao)y” + (brz + bo)y’ + coy = 0, (9.2.34)

where as, a1, ag, b1, bg and cg are constants and coefficients of each deriva-
tive appearing in the equation is a polynomial of the same degree as the
order of the derivative. This equation includes the Legendre, Chebyshev,
and hypergeometric differential equations as special cases. In order to find
the solution of (9.2.34), Euler introduced the solution y(z) in 1769 as the
Euler transform of a function f(t) defined by

b b
o) =B {10} = [ Kty = [ %, (9.2.35)
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where K(z,t) = (z —t)"*"! is called the Euler kernel in the complex t-
plane. Although the Euler kernel can be deduced for ordinary differential
equations of the (9.2.34), the Euler transform is more appropriate than
the Laplace transform for equations with only regular singular points. The
kernel of the Laplace transform has an essential singularity at infinity, and
the Laplace transform is more suitable for equations which have an irregular
singular point at infinity.

To illustrate the use of the Euler transform, we obtain the Euler integral
solution of the Legendre differential equation in the form

(1—2%)y" —2zy +n(n+1)y=0, (9.2.36)

where n is an integer and equation (9.2.36) remains unchanged with the
replacement of n by —(n + 1).

We introduce the Euler transform y(z) of a function f(¢) defined by
(9.2.35) so that the derivatives of y are

y/:—(a—i—l)/%’ " = (a+1)(a+2)/%. (9.2.37)

Substituting ¢’ and 3" in (9.2.36) gives
/ [(a+1)(a+2)(1—2?) +2z(a+1)(z —t) + n(n+ 1)(z — t)?]
f(®)dt

Using results 2 = (z—t)+t and 22 = [(z — t) + > = (¢ — )2+ 2t (z —t) +12
in integral (9.2.38) and simplifying yields

Af(hdt | [ B [ OO0
/ : + / + / o, (9.2.39)

-ttt | @t T | (@)t

where

A =n(n+1)—ala+l), B(t)=—-2t(a+1)?, C(t) = (1-t*)(a+1)(a+2).

(9.2.40)

We choose a to make A = 0, then the first integral in (9.2.39) is zero.

Integrating by parts allows us to combine the third integral with the second

integral in (9.2.39). This leads to a first order differential equation for f(¢)

with only a single boundary term. With the choice of & = n, result (9.2.39)
can be reorganized to obtain

(LC _ t)n+3 (LC _ t)n+2
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Integrating the first integral in (9.2.41) by parts leads to
d [(1-12)5)
IE [ @ } a
d
- / @w—pme _1)n+2 {5 {@=2)r)} —2t(n+ 1)f(t)] dt = 0. (9.2.42)

This result is satisfied by requiring each integral vanishes separately so that

d [(1-)f(t)
— |V—=|dt=0 9.2.43
/dt { (x —t)nt2 ( )
which determines the domain of integration. Thus, f(¢) satisfies the first
order differential equation

d

= (A=) )] —2t(n+1)f(t)=0. (9.2.44)
The solution of this equation is given by
ft)y =1 —t3Hm. (9.2.45)

Therefore, the Euler transform solution of the Legendre equation is ob-

y(z) = / (a—tidt (9.2.46)

L@
where the domain of integration is determined by (9.2.43), that is, by
d (1 _ t2)n+1
— |———=\dt=0. 9.2.47
/alt{(ac—t)’”r2 ( )

In order to determine the appropriate domain of integration in (9.2.46)

tained in the form

and (9.2.47), we note that the numerator of each integrand vanishes at
t = +1 and that the denominator vanishes at ¢ = x. The point x =1 is a
regular singular point of the Legendre equation (9.2.36) and the integrands
in (9.2.46) and (9.2.47) have simple poles at ¢ = 1. So, if the range of z
is confined to the region |z| > 1, then the domain of integration can be
chosen such that —1 <t < 1 which ensures that (9.2.47) remains valid and
integrands in (9.2.46) and (9.2.47) have no singularities. Thus, the solution
of the Legendre equation takes the standard definite integral form
1M —)nat

Qn(z) = TS /_1 @D (9.2.48)
This is usually known as the Legendre function of the second kind of order
n. For || > 1, Q,(z) is linearly independent of the Legendre polynomials
P, (z) given by the Rodrigues formula
1 oar
T 2npldan

P, (x) [(z* —1)"]. (9.2.49)
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These polynomials are finite for any finite value of x. Thus, two solutions
P, (z) and @, (z) form a fundamental set for the Legendre equation (9.2.36)
in the region |z| > 1 for any integer n. For n =1, 2, 3, --- the Rodrigues
formula (9.2.49) can readily be used to calculate polynomials P (z), Pa(x),
Ps(z), - - - and this formula can also be used to obtain the integral represen-
tation of the Legendre polynomials. In order to show this, it is convenient
to change the real = to complex z = x + iy. We define the finite complex
Legendre polynomials in the same way as for real z. In particular, we write
the Rodrigues formula for complex z in the form

1 oar
T 2nnldzn

We then recall the Cauchy integral formula for a complex function f(t)
which is analytic on and inside of a simple closed contour C, then

P.(2) (2% —1)". (9.2.50)

! t)
() (5 — Ldt 9.2.51
where z is any point inside C. Using the Rodrigues formula, we obtain
1 dn 1 (t2 — 1)"dt
Py(z) = ——(z* - 1)" = . 9.2.52
() =g V' = o5m /C (t — 2)n+1 (9252)

This is known as the Schldfli representation of P,(z). To simplify (9.2.52),
we next choose C' to be a circle with center ¢t = z and radius |v22 — 1| with
z # 1. Putting t = 2z + V22 — 1 €% in (9.2.52) and simplifying gives

1 27 n
P,(z) = _W/o (z + V22— 1cos 9) do. (9.2.53)

This is known as the Laplace integral representation for P,(z). It is also
valid for z = 1 so that P,(1) = 1.

We can then derive a simple integral relation between P, and Q,, by in-
tegrating @, (x) by parts n times and using (9.2.51). The resulting integral
formula is known Neumann’s integral formula in the form

1 [P,

Qn(z) = 5 B p— dt, (9.2.54)
where the denominator of the integrand does not vanish as |z| > 1 and
[t] < 1.

In his 1769 Institutiones Calculi Integralis, Euler presented the hyper-
geometric differential equation

z(1—2)y" +c—(a+b+1)z]y —aby =0, (9.2.55)
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where a, b and ¢ are constants and then derived the infinite series solution
known as the hypergeometric series

a.b ala+1)b(b+1) ,
= 1 _ _—
T T adern) T

ala+1)(a+2)bb+1)(b+2) 4

123c(c+ Dct+2)

It was Johann Friedrich Plaff (1765-1825), Gauss’ teacher and friend, who

introduced the term hypergeometric to describe the differential equation
and its solution as the hypergeometric function.

The Euler transform (9.2.35) can be used to solve (9.2.55). The method
of solution is similar to that used for finding the solution of the Legendre
equation (9.2.36). Making reference to that method of solution, we obtain
the Euler’s solution for y(x) as

y(z) = /100 (1 —) T (@ —t) " dt (9.2.57)

where |z| <1 and ¢ > b > 0.
Expanding the factor (x — t)~* and integrating each term in the series
leads to the following series solution

(9.2.56)

y(@) = Fla,beiz) = 3 Wl
n=0
where (a), =a(a+1)---(a+n—1) with (a)o =1 and F(a,b,c;0) = 1.
The following special cases follow from the hypergeometric function
(9.2.54):

=, (9.2.58)

F(a,b,b;z) = (1 —x)°, (9.2.59)
1
F(1,1,2;—x) = - In(1 + ), (9.2.60)
. €T T
blig)loF (a,b,a, 3) =e", (9.2.61)
113 1
F ___'2 :—‘.71 .22
(2,2,2,m> _sin” (9.2.62)
1—=2

The standard integral representation of the hypergeometric function is

F(C) > a—c(y _ c—=b—17y T —a
) /1 o~ 1)l — ) odr (9.2.64)

F(a,b,c;m) = m



Euler and Differential Equations 273

Another equivalent form of the integral representation of the hypergeomet-
ric function is

1
Fla,b,c;x) = =———o—o0 [ "7H(1 =) P71 (1 —at)%dt, (9.2.65
(@.h.6:0) =m0 =0T =) (9269
where ¢ > b > 0.
Euler also showed the following results

F(—n,b,¢;2) = (1 —2)"™PF(c+n,c—b,c; 2), (9.2.66)
| 1
F(—n,b,c;2) = % / N1 — )t (1 — zt) Pt (9.2.67)
C)n Jo

During the seventeenth and eighteenth centuries, mathematicians made
serious attempts to solve ordinary differential equations in terms of elemen-
tary functions and quadratures. When these methods failed, they solved
equations by means of infinite series and by numerical methods. We con-
clude this section by adding Euler’s numerical method. In 1768, Euler
developed a simple finite difference method for the numerical solution of an
ordinary differential equation

dy _

= 9.2.68
7 = f(@Y), ( )

with the given initial condition
y(zo) = yo. (9.2.69)
With a uniform step size h between the points zg, 1, x2, ---, Euler
constructed points 41 =29+ (n+1)h =2, +h,n=0,1, 2, ---, and

then obtained the formula

Yni1 = Yn + 1 f(@nyYn) = Yn + hyl, + O(h?). (9.2.70)

If f(z,y) is continuous, then the sequence of Euler polygonal lines converges
uniformly as h — 0 to the unknown function y(z) on a sufficiently small
closed interval containing zy. However, Euler’s formula is not an accurate
formula.

The modified Euler formula for the initial value problem (9.2.68)—
(9.2.69) is given by

1 1

The so-called improved Euler method is a simple refinement of the Euler
method that takes into account of the average value of the gradient at the
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end points (z,,y,) and (Tn41,Yn+1). So, the improved Euler formula for
the initial value problem (9.2.68)—(9.2.69) is given by

J(@nyn) + f(@ni1, Yng1)
h

Yn+1 = Yn +h

=yt £ ) + F(on + oy + /)] + OGF), (0.2.72)

where z,,+1 has been replaced by (z,, + h).

Subsequently, further refinement of the Euler method and its modifi-
cations was made by Carl Runge (1856-1927) in 1895 and M. W. Kuttta
(1867-1944) in 1901 who based their work on the Taylor series approxima-
tion. The Runge-Kutta formula involves a weighted average value of f(x,y)
taken at different points in x,, < z < x,41 and it is given by

h
Yn+1 =Yn t g (k1p + 2koy + 2k3, + kan) + O(B5), (9.2.73)
where ki, = f(l‘n, yn), kon = f (Z‘n + %h, Yn + %h kln)a k‘gn =

f (@0 + 2h,yn + $hkoy) and kg, = f(xn+h,yn+ hks,). The sum
(k1n + 2kap, + 2k3y, + k4 )/6 can be interpreted as an average value of the
slope. The Runge-Kutta formula is one of the most accurate and successful
of all one-step formulas, and hence, it has been widely used in solving initial
value problems.

The Euler method has been refined by means of various modifications
over the last 300 years. The major problem that must be investigated for
every numerical method is the convergence of the approximate solution to
the exact solution as h — 0. With the advent of high speed electronic com-
puters, the use of numerical methods to solve initial value problems has
become very common. In addition to the question of convergence, there
is also the question of calculating the error made in computing the values
Y1, Y2, -+, Yn. Usually, this error arises from two sources: first, the for-
mula used in the numerical method is only an approximate one that causes
truncation error, or discretization error; second, any modern computer
introduces rounding errors during computation.

Euler’s method and its extensive modifications can be used to solve the
more general case of solving a system of n ordinary differential equations

y;z,:f’ﬂ(x7y17y2a"'7yn)a n:1a27"'7n (9274)

with the given initial conditions

Yn(T0) = Yn, - (9.2.75)
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The new general methods for solving ordinary differential equations were
yet to be discovered. But no major new methods beyond those already dis-
cussed above were invented for a hundred years or so, until the Laplace
transform and operator methods were introduced at the end of the nine-
teenth century. It must be recognized that Euler’s analytical and numerical
methods have served as the fundamental basis for all subsequent develop-
ments in the classical and modern theories and computations of ordinary
differential equations.

9.3 Euler’s Work on Partial Differential Equations

During the middle of the eighteenth century, the wave equation and its
methods of solution attracted the attention of many celebrated mathemati-
cians including Johann Bernoulli, Leonhard Euler, Daniel Bernoulli, J. L.
Lagrange, and Jean d’Alembert. It was d’Alembert who first derived the
one-dimensional wave equation for vibration of an elastic string and solved
it in 1746. Some form of this equation or its various generalizations almost
frequently arose in any mathematical analysis of propagation of waves in
continuous media. In fact, the studies of water waves, acoustic waves, elas-
tic waves in solids, and electromagnetic waves are all based on this equa-
tion. A classical technique known as the method of separation of variables
is perhaps one of the oldest systematic methods for solving partial differen-
tial equations including the wave equation, the diffusion equation and the
Laplace equation (or potential equation).

Euler considered a more general order partial differential equation,
known as the Fuler equation, in the form

9%u 0%u 0%u

— +2h ——— — = 3.1
a8x2+ h8x8y+b6y2 0, (9.3.1)

where a, h and b are constants.
We first define two new independent variables £ and n by the linear
relations

E=pr+qy, n=rz+sy, (9.3.2)

where p, q, 7 and s are arbitrary constants. Then
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Ou  Qudf Oudn 8u 8u

o 8_5% + 7 o o 8£ (9.3.3)
ou OJudf Oudn 8u
ou _ Juog 3.4
oy —ocoy “onoy Yot (9:34)
Pu_ 0 (ou\ _( O . ﬁ @ L ou
a2 or\ozr) \Pac "an) \Pac T oy
2 Pu 0P 0u
O*u 0 [0Ou 5 0% O*u 5 0%
- - [ =) = 2 —_— 0.
dy*  y (3y> o T ey T o (9:3.6)
OPu _ 0 (ou\_( 0 i 2y @
oroy oz \ay ) \Poe © ¢
0%u 0%u 0%u
=pq =— e + (rq + sp) =—— 858 8—772 (9.3.7)

Substituting these results for the second partial derivatives into (9.3.1) gives
2

9%u 0“u
2 b
(ap® + 2hpq + bg?) e + 2 [apr + bsq + h(rq + sp)] 2¢om

2
+ (ar® + 2hrs + bs?) % =0. (9.3.8)

We now choose p, ¢, r and s such that p = » = 1 and such that ¢ and s
are the two roots A\; and A\g of the quadratic equation

a+2hA+bX2 =0 (9.3.9)
so that
2h
MAdg=-T and Ao = % (9.3.10)
Consequently, equation (9.3.8) reduces to
0%u
h(A1+ A b A =0 9.3.11
l[a+h(A+ X2) + 12]358 ( )
which is, by (9.3.10),
2 0%u
~(ab — h? =0. 9.3.12
o= 1) S (9312)

We characterize the Euler equation (9.3.1) as hyperbolic (roots A1, A2
are real and distinct), parabolic (roots A1, Ay are real and equal), or elliptic
(roots A1, Ag are complex). If equation (9.3.1) is not parabolic (ab—h? # 0),
equation (9.3.12) may be integrated to give the general solution

u(z,y) = (&) +1(n) = ¢(z + My) + Pz + Aay). (9.3.13)
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where ¢ and ¢ are arbitrary functions, A\; and Ay are the roots of (9.3.9).
This is the case for the hyperbolic and elliptic equations depending on
h? —ab > 0 or < 0. In the former case, the general solution (9.3.13) is
the sum of two arbitrary functions of real arguments. In the latter case,
the roots A1, A2 of (9.3.9) are complex conjugates with a + i3 so that
E=zx(a+if)y and n = x+ (a—1iB)y = £*. Consequently, equation (9.3.12)
becomes

0%u

2323

=0 (9.3.14)

and the general solution is

u(z,y) = (&) + (&) = ¢z + ay +iBy) + Y(z + ay —ify). (9.3.15)
Thus, the general solution (9.3.15) is the sum of two arbitrary functions of
complex arguments which is the general property of the solution of elliptic
equations.

For the parabolic case, ab — h? = 0 and (9.3.12) is satisfied identically.
The roots A1 and Ao are equal. We choose p = 1 and keep ¢, 7 and s are
arbitrary. Then

0%u 0%u 0%u
2 2 2 _
(a+2hg+bq )852 +2[ar+bsq+h(rq+s)] 858”4—(&7‘ +2hrs+bs )8772
(9.3.16)

If ¢ is now chosen to be root of a + 2hq + bg?> = 0, then ¢ = —%, is the

double root because ab— h? = 0. Consequently, the first term of (9.3.16) is

zero and the middle term of (9.3.16) is also zero because ab — h% = 0.
Thus, if r and s are not both zero, equation (9.3.16) becomes

0%u
— =0. 9.3.17
o (9:3.17)
Integrating this equation gives the general solution
u(z,y) = o(&) +np(S), (9.3.18)

where ¢ and ¢ are arbitrary functions and since p = 1, ¢ = —h/b = A
E=x+ Ay and n = rz + sy (r, s are arbitrary, but not both zero). Hence,
the general solution (9.3.18) reduces to

u(z,y) = o(x + \y) + (rz + sy) ¥(z + \y). (9.3.19)

The above solution can be applied to the partial differential equation of

a stretched elastic string of constant line density p and constant tension 7™*
or plane waves of sound in the form

Pu 5 0%
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where ¢ = T*/p.

Using & = x4+ A\t and 7 = = + Aot, where Ay and Ay are the roots of
A2 —¢? =0, that A\; = c and Ay = —c. Consequently, the general solution
of (9.3.20) is

u(z,y) = ¢p(x + ct) + Y(z — ct). (9.3.21)
This solution represents the sum of two waves, the first one traveling to the
left with constant velocity ¢ and the second one traveling to the right with
the same velocity c.
We next obtain the d’Alembert solution of the one-dimensional wave
equation (9.3.20) subject to the initial conditions
ou
u(z,0) = f(z) and — = g(x), (9.3.22)
ot ), o
where f(x) and g(x) represent the initial displacement and the initial ve-
locity at time ¢ = 0.
The general solution of (9.3.20) is given by (9.3.21) in the form

u(z,t) = ¢z + ct) + Y(z — ct), (9.3.23)

where ¢ and v are arbitrary twice differentiable functions of real arguments.
Using the initial conditions (9.3.22) gives

o(z) + ¥(x) = f(x), cd'(z) —c'(z) = g(x), (9.3.24)

where the prime denote the derivative. Integrating the second equation, we
have

o)~ () = 1 [ g(e)de. (93:25)
where the constant of integration has been included in the lower limit by
introducing an arbitrary constant a. From the first equation of (9.3.24) and
(9.3.25), we obtain

o) = 550 + 50 [ a6y (9.3.26)
vla) = 5f@) — 5 [ g(e)de. (9.321)
Consequently, the solution (9.3.23) can be expressed in the form
1 1 x+ct
u(z,t) = 3 [f(x+ct) + f(x —ct)] + % /gkct g(&)d¢. (9.3.28)

This is the celebrated d’Alembert solution. It is worth noting that the value
of the displacement function u(z,t) depends only on the initial values at
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points between x — ¢t and x + ¢t and not at all on initial values outside the
interval [z — ct,x + ct]. This interval is called the domain of dependence
of variable (z,t). Clearly, the solution (9.3.28) is unique and stable as it
depends continuously on the values of the initial conditions (9.3.22).

In particular, if the string is displaced with the initial displacement f(x)
and zero initial velocity so that g(z) = 0, then the solution (9.3.28) becomes

w(a, ) = % (F(z + ct) + f(z — cb)]. (9.3.29)

This represents two like waves and each one has half the original displace-
ment.

On the other hand, if the string is displaced from zero displacement
with arbitrary velocity so that f(z) = 0 and g(z) # 0. With g(z) = 92,
the solution (9.3.28) assumes the form

w(z, t) = % h(z + ct) — h(z — ct)] . (9.3.30)

Thus, the two waves are opposite to each other.

We next include here Euler’s basic paper of 1749 dealing with all possible
motions (periodic in both x and t) of a vibrating sting of finite length ¢.
In this case, the displacement function u(x,t) satisfies the wave equation
(9.3.20) in 0 < = < ¢ and ¢t > 0 subject to the same initial conditions
(9.3.22) and boundary conditions u(0,t) = 0 = u(¢,t) for t > 0. Using
the separable solution u(x,t) = X (x)T(t) # 0, the problem reduces to the
eigenvalue problem (see Myint-U and Debnath (2008)) with an infinite set of

eigenvalues \,, = — ("7”)2, and the corresponding eigenfunctions sin (27%),
where n = 1, 2, 3, ---. Thus, the nth normal modes of vibration or nth
harmonic can be represented by
t t
un(z,t) = | an cos nre + n, sin nret sin (w) , (9.3.31)
14 14 14
an[sin ™ (@ — ct) 4 sin T (2 + )]
= —a, |sin—(z —c sin — (x
2 14 14
1
+§bn [cos %(az —ct) + cos %(az + ct)} , (9.3.32)

where a, and b,, are constants to be determined by the initial conditions
(9.3.22). Thus, the modes of vibration consists of terms

sin n%(x +ect) and cos n%(x + ct), (9.3.33)

which are periodic not only in ¢, but in x so that the wavelength of vibration
nmwi

is given by (222 :27ror)\:)\n:2—e,wheren:1, 2,3, ---.
4 n



280 The Legacy of Leonhard Euler — A Tricentennial Tribute

On the other hand, if we denote the discrete spectrum of circular (or

radian) frequencies are defined by wy,, then w, = (25<) so that the angular

frequencies vy, are given by v, = (wy/27) = (%), n =1, 2, 3, ---. Thus,
the periodic times, T;, = i—: = (Z£). Whenn =1, w; = (Z£) = 1 7;)*

is called the fundamental circular frequency and all other harmonics for
n > 1 are known as fundamental circular frequency. Thus, the fundamental

angular frequency is
T*
=1 / .3.34
V=g é (9.3.34)

This is usually called the fundamental (or Mersenne) law of a stringed
musical instrument. Evidently, the angular frequency of the fundamental
mode of transverse vibration of a string varies as the square root of the
tension, T, inversely as length, ¢, and inversely as the square root of the
density. The period of the fundamental mode is 71 = (%) so that T, =
% - Ty, where T7 is often called the fundamental period. Clearly, w, = nw
(or v, = n-vy) which are all integral multiple of the fundamental frequency.
This is the main reason why the stringed musical instruments produce
sweeter musical sound (or tones) than drum instruments. Furthermore,
the wavelength of vibration A, % = c¢- T}, which is equal to the distance
traveled by the wave traveling Wlth speed ¢ during the time T;,.

Since the wave equation (7.3.20) is linear and homogeneous, the most
general solution is the superposition of an infinite number of harmonics in

o0 o0
nm nmct nmw
t) = Zun(x,t) = Z (anCOb 7 + by, sin 72 ) sin%,
n=1 n=1
(9.3.35)
provided the series converges and is twice continuously differentiable with

respect to x and t.
Applying the initial conditions (9 3.22)

u(x,0) Z @y, sin (mrx) (9.3.36)

u(z,0) Zb (mc) i (”—7) (9.3.37)

whence the coefficients a,, and b,, are given by

an é/ f(z sm )dx by, = <%> /Ogg(a:)sin (?) dx.

(9.3.38)

the form
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The nth normal modes of vibration is given by (9.3.31) which has nodes
at the points
co

z=0 —
7n7n’ é’

(9.3.39)

and so the nth modes divides the string into n equal segments of length
(£).

It is important to note that Euler did not specify whether the series in
(9.3.35) contains a finite or infinite number of terms. However, Euler has the
remarkable idea of superposition of vibrating modes. Thus, Euler’s major
point of disagreement with d’Alembert is that his solution admits all kinds
of initial curves and hence, non-analytic solutions, whereas only analytic
initial curves and solutions were acceptable to d’Alembert. In introducing
his discontinuous functions, Euler wrote to d’Alembert on December 20,
1763 that “considering such functions as are subject to no law of continuity
[analyticity] opens to us a wholly new range of analysis”. Although Eu-
ler and d’Alembert agreed on the form of their equations, they had very
different ideas as to what functions would qualify as initial data and so as
solutions of the wave equation. The controversy continued between them
for many years. In the mean time, Daniel Bernoulli and Lagrange made an
unacceptable attempt to resolve the controversy.

While the controversy over the problem of the vibrating string contin-
ued, the major interest in the extensions of the wave equation prompted
further research in problems of wave propagation. In 1762, Euler considered
the problem of vibrating string with variable thickness in his paper “On the
Vibratory Motion of Non-Uniformly Thick Strings”. He declared that the
general solution is almost beyond the power of mathematical analysis, and
so, he obtained the solution of the problem for a particular case where the
mass distribution m is given by

m=—" (9.3.40)
(1+3)
where p and a are constants. Then it follows that the solution is given by
1
u(z,t) = 1 [p(Az + cot) + Y (Az — cot)], (9.3.41)

where % = (1 + %), co = +/T/pand T is the constant tension of the string.
The frequencies of the modes of vibration (or harmonics) are

n 14
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Therefore, the ratio of two successive frequencies is the same for a string of
uniform thickness, but the fundamental frequency w; is no longer inversely
proportional to the length of the string.

In his paper of 1762, Euler also investigated the vibration of a string
of two lengths, a and b of different thickness r and s, and obtained the
frequency equation for the modes of vibration in the form

mtan (ﬂ) + ntan <w_b> =0, (9.3.43)
m m
where w is the frequency which was determined in special cases. The solu-
tions of (9.3.12) are referred to as the characteristic values (or eigenvalues)
of the string problem. It is also evident from (9.3.12) that the characteristic
frequencies are not integral multiples of the fundamental frequency.

On the other hand, d’Alembert also considered the problems of vibration
of string with constant and variable thickness in 1763 and used the method
of separation of variables introduced by him. In the same paper, he wrote
the wave equation in the form

0%u 5, 0%
— = — .3.44
BT c(x)ax2, O<z<¥, t>0, (9.3.44)
u(0,t) =0 =u((,t), t>0. (9.3.45)
He assumed the solution of the form
u(z,t) = n(x) cos(Art), (9.3.46)
so that (9.3.44) reduces to equation for 7(x) as
9°n A272
Z__Z - =0 =n¥). 3.4
A= a0 =0=n(0 (9.3.47)

This is called the boundary value or (eigenvalue) problem for ordinary dif-
ferential equations. He showed that there are infinitely many values of
A

In 1781, Euler also investigated the transverse vibration of a heavy
continuous horizontal string in his paper entitled ‘On the modifying effect
of their own weight on the motion of strings’. He solved the associated
wave equation in the form

2 2
%202%4—9, O<axz<dl t>0, (9.3.48)

where ¢ is a constant and the boundary conditions are u(0,t) = 0 = u({,t)
for t > 0. His solution is

u(z,t) = —%CQ gz(x — ) + ¢(x + ct) + (z — ct). (9.3.49)
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This solutions are in agreement with that of the vibration of string of zero
weight, where g = 0, except that the oscillation takes place about the
parabolic curve of equilibrium

w=— (2%) z(z — 0). (9.3.50)

In 1759, Euler investigated the vibration of a rectangular membrane of
dimensions a and b so that 0 < z < a and 0 < z < b and derived the
equation of motion for the vertical displacement u(x,y,t) of the membrane

as
Pu 4 [(0*u  O%u
w = C (@ + a—y2) 3 (9351)

where c¢ is a constant determined by the mass and tension. Euler solved
(9.3.20) by assuming separable solution in the form
u(z,y,t) = v(z,y) sin(wt + €), (9.3.52)
w is the frequency of vibration and e is the phase so that v(x,y) satisfies
the equation
v 0% wW?
—+ —+—=v=0. 9.3.53
0x? + Oy? + 2" ( )

This equation admits the sinusoidal solutions of the form

(0 o (BY
v(z,y) = sin ( a + 61) sin < b + 62) , (9.3.54)
where
w2 042 52

With zero initial velocity, €1 and €2 may be set zero. For fixed boundaries
of the membrane, we find &« = mm and 8 = nnw, where m and n are integers
so that the frequency w = wy,, is given by
1
m2  n2\ 2
For the vibration of a circular membrane of radius » = a, Euler wrote
equation (9.3.20) for u(r, 8,t) in polar coordinates (r,§) in the form
Pu o, (0*u 10u 1 0%u
Z — e — 4+ —=——). 9.3.57
oz~ © (W ror 2 692) (9:3.57)
He sought solutions of (9.3.26) in the form
u(r,0,t) = v(r)sin(wt + 1) sin(vd + €3), (9.3.58)
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where v(r) satisfies the Bessel equation

v 1ldv w? 2
W—F;%—F (g—r—Q)v—O. (9.3.59)

Euler used an infinite series solution of (9.3.59) and obtained

”(%) = {1_ﬁ (%)2+ 1.2(V+1)(1/+2) (%)Z}

(9.3.60)

which can be written in terms of the Bessel function .J, (“’77’) as
wr c\? wr
o(2)=(5) 2re+na (2, (9.3.61)
c w c
For a fixed edge r = a, it turns out that
wa
Jy (—) ~0. (9.3.62)
c
Since u(r, 0, t) is periodic of period 27 in 6, ¥ must be integer so that for a
fixed v, there are infinitely many roots w. Euler was unsuccessful in finding
a second solution of (9.3.59). Subsequently, S. D. Poisson fully developed
the theory of vibrating elastic membrane.

In his 1759 paper ‘On the Propagation of Sound’, Euler considered the
propagation of sound in one space dimension as waves of small amplitude
and derived the wave equation

0?u 5 0%u 9

— =" =, c® =2gh, 9.3.63
o2 ~ ¢ a2 g (9.3.63)
where u(z, t) is the amplitude of the wave, g is the gravitational acceleration
and h is a constant relating the pressure and density.

Euler then extended his work to the two-dimensional wave propagation
equation in the form

Pu 5 (Pu O 0?v o (0% D%u

7= 2t 2 ) 2= 725 +72

ot? 0z2 = 0z0y ot? oy?  Oxzdy
where u and v are the wave amplitudes in the x and y directions respectively.
He obtained the plane wave solutions of the form

u = k¢ (kx + Ly + cxt), v="L¢ (kx+ Ly + ckt), (9.3.65ab)

) . (9.3.64ab)

where k and £ are arbitrary constants, x = (k? + 62)% and ¢ is an arbitrary
function. He used the divergence of the displacement w = u, + v, so that
w satisfies the two-dimensional wave equation
Pw <82w 82w>
=c .
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He recognized the need for the superposition of solutions in order to deter-
mine the general solution subject to some initial data, that the given value
of wor of w and v at ¢t = 0.

Introducing z = y/22 + y? and w = f(z,t), u = zw and v = yw, Euler
obtained the partial differential equation from (9.3.66) as

Pw (30w Dw
o (z 7z W) (9:3.67)
Similarly, he derived the three-dimensional wave equation
Pw L (PPw  Pw  Fw
— = — t+ =+ 9.3.68
oz ¢ (83:2 a7 * 822) (9:3.68)

Using the above equations, Euler investigated both cylindrical and spherical
waves. The fundamental equation for the spherical waves is
W i W 4 oW
B (a— . E)
where r = \/m .

Both Euler and Lagrange independently did considerable work on cylin-
drical and spherical waves. On the other hand, the propagation of sound
waves in air was studied extensively by Daniel Bernoulli, Euler and La-
grange. They published numerous papers on this subject with special at-
tention to the fundamental harmonic and overtones produced by a wide
variety of musical instruments.

A more general form of the wave equation is

(9.3.69)

Uy — CQ(x)um =0, (9.3.70)
where ¢ is a function of x only. The characteristic coordinates are now
given by

*odr *odr
=t— —_, =t —. 9.3.71ab
e=t- [ Lot [ 5 (9.3.71ab)
Thus,
L+ +
Uy = —— Ug + — Uy, U = Ug + Uy,
c 3 e i 3 n
1 d(x)

Uae = —5 (uge — 2ugy + uny) — (un — ue)

Ugy = Ugg + 2Ugn + Uny.

)
02

Consequently, equation (9.3.70) reduces to
Qugy + ' (x) (uy — ug) = 0. (9.3.72)
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In order to express ¢ in terms of £ and 7, we observe that

T dr
—&=2 —_ 9.3.73
-¢=2 [ L (9373)
so that z is a function of (n —¢). Thus, a'(x) will be some function of

(n—28).
In particular, if c(z) = Az™, where A is a constant, so that ¢/(z) =
n Az" !, and when n # 1, result (9.3.73) gives

2 1 1
—f=—-—— 9.3.74
n=¢ An—1)an! ( )
so that
2n 1
d(z)=— —
U e R
Thus, equation (9.3.72) reduces to the form
2n 1

4 - — =0.
Ugn (TL — 1) (77 — f) (Un uf)
Finally, we find that

n 1

Ugy = - =0 (uy — ug) . (9.3.75)

When n = 1, ¢(x) = Az, and ¢/(z) = A, substituting £ = § and n = % can
be used to reduce equation (9.3.72) to

1
Uap = 7 (Ua —ug) . (9.3.76)
Equation (9.3.75) is called the Euler—Darboux equation which has the
hyperbolic form
m

r—y

(uz — uy), (9.3.77)

uzy =

where m is a positive integer.
We next note that

afay [(z —y)u] = a% {(x - y)g—Z - u] = (2= Y)Uay+(uy —ug). (9.3.78)

When m = 1, equation (9.3.77) becomes
(& = Yty = Uz — uy
so that (9.3.78) reduces to

82
920y [(z —y)u] =0. (9.3.79)
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This shows that the solution of (9.3.79) is (z — y)u = ¢(x) + ¥ (y). Hence,
the solution of (9.3.77) with m = 1 is

u(z,y) = 2L TG (9.3.80)
r—y
where ¢ and v are arbitrary functions.
We multiply (9.3.77) by (z —y), and apply the derivative 82—2@;’ so that
the result is, due to (9.3.78),
82

(@ = 1) 5 )+ (55~ 52 ) () = (5= 51 )

Or,
0? o 0
—Y)m—= (Ugy) = D =——= zy) - 9.3.81
(o= 1)y ) = 0+ 1) (57 = 5 (1) (9.3:81)
Hence, if u is a solution of (9.3.77), then wu,, is a solution of (9.3.77) with
m replaced by m + 1. When m = 1, the solution is given by (9.3.80), and
hence, the solution of (9.3.77) takes the form

o(z) + ¢(y)]
z—y ’

82m—2

u(z,y) = Jem—1gym=1 [ (9.3.82)

where ¢ and v are arbitrary functions.
In deriving the wave equation (9.3.20) of motion of a string of constant
tension T™*. If T* is a function of z, then the wave equation (9.3.20) must

be of the form
Pu 0 v 20U

Introducing the normal displacement function u(z, t) = y(x) coswt equation
(9.3.83) assumes the form

d dy 2

For a heavy chain of length ¢ hanging vertically from one end, T* = gpz,
where z is measured from the free end so that (9.3.84) becomes

d dy

4 <x £> =0, A= (wP/g). (9.3.85)

In 1733, Daniel Bernoulli derived this second order equation for the dis-
placement function. Introducing the variable 2 = 22 so that
dz dy dz dy 1 dy

d dy_ldzzdy_ld dy
dzx (w @) 2z dz (2z dz) 4z dz (Z dz )’ (9:387)
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equation (9.3.85) reduces to the form

dy ldy 5 2
i = =4 o,
dz2+zdz+cy , c A, (9.3.88)
which is, by a change of variable, cz = £,
d’y  1dy
— 4+ - — =0. 9.3.89
e TratY ( )

This is the classical Bessel equation which admits an infinite series so-
lution in terms of the Bessel function of the order zero in the form

y=AJo(€) = AJy (2z), (9.3.90)

A is a constant. If x = ¢ is a node, then Jj (2\//\€) = 0 which is an
eigenvalue equation for eigenvalues A. This equation has infinitely many
roots. For each A, there is mode of oscillation and a characteristic frequency.

9.4 Euler and the Calculus of Variations

In order to bargain land with Libyans for the expansion his own great
city of Carthage, the Queen Dido needed to find out what shape of a plane
curve enclose a maximum area. The natural generalization of Dido’s famous
problem led in time to the formulation of the isoperimetric problem of the
calculus of variations.

At the end of the seventeenth century, many fundamental questions and
problems in geometry and mechanics deal with minimizing or maximizing
of certain integrals for two major reasons. The first of these were several
existence problems, such as, the Fermat principle of least time (that is, a
ray of light travels in a homogeneous medium from one point to another
along a path in a minimum time), brachistos. Newton’s problem of missile
of least resistance, Bernoulli’s isoperimetric problem, Bernoulli’s problem
of brachistochrone (brachistos means shortest, chronos means time), and
the problem of finding the surface of minimum area bounded by a closed
curve in space due to Joseph Plateau, the Belgian physicist. The second
reason was somewhat philosophical due to Euler, that is, how to discover a
minimizing principle in nature. The 1744 famous statement of Euler is the
characteristic of the philosophical origin of what is known as the Principle
of Least Action: “For since the fabric of the Universe is most perfect and
the work of a most wise Creator, nothing at all takes place in the Universe
in which some rule of maximum or minimum does not appear.” The cele-
brated minimum problem associated with Plateau’s name is now involved
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with partial differential equation. Plateau’s brilliant experimental work on
soap bubbles and liquid films provided a remarkable relationship between
mathematics and experimental research. The spherical soap bubbles re-
veals that among all closed surfaces including a given volume, the sphere
has the minimum area.

In the middle of the eighteenth century, Pierre de Maupertuis, a
French mathematician and astronomer enunciated the fundamental prin-
ciple, known as the Principle of Least Action, as a guide to the nature
of the universe. He believed that this simple and grand principle would
embrace all phenomena of nature and once said: “God’s intention to regu-
late physical phenomena by a general principle of highest perfection.” The
principle of least action, where the action is defined as the mean value
of the difference between the kinetic and potential energies of a physical
system averaged over some fixed time interval. The formulation of the
equations of dynamics based on this principle may be considered as one of
the most remarkable discovery of mathematical sciences. Historically, Mau-
pertuis formulated the principle of least action in an attempt to extend the
fundamental principle of Pierre de Fermat in optics that, in a optically ho-
mogeneous medium, a ray of light travels from one point to another along
the shortest path and in the minimum time.

Joseph Lagrange gave a more precise and general formulation of Mau-
pertius’ principle in his book Analytical Mechanics published in 1788. He
formulated it as

ta
58 = 5/ (2T)dt = 0, (9.4.1)
t1

where 7" is the kinetic energy of a dynamical system with the constraint
that the total energy, (T + V) is constant along the trajectories, and V is
the potential energy of the system. He also derived the celebrated equation
of motion for a holonomic dynamical system

d (0T orT

4 _Z _q, 9.4.2
where ¢; are generalized coordinates, ¢; is the velocity, and @Q; is the force.
For a conservative dynamical system, Q; = —g—;, V =V(g), g—; =0, then
(9.4.2) can be expressed in terms of the Lagrangian, L =T — V, as

d (0L OL

— — =0. 9.4.3

dt (5%) 0q; ( )

In 1744, Euler reformulated this principle in a more general way so that
it becomes more useful in mathematics and physics. More precisely, the
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discovery of the calculus of variations in a modern sense began with the
independent work of Fuler and Lagrange. Indeed, Euler systematically
solved a large number of problems of different kinds and discovered a general
geometric approach to their solutions.

In the simplest case, Euler’s problem is to determine a curve y = y(x)
that makes the functional

’ ’ ,dy
= / F(z,y,y")dz, THE I (9.4.4)

o dx
minimum (or maximum), where the function takes prescribed values at
the end points fixed, that is, y(a) = a and y(b) = §; y belongs to the class
C? ([a, b)) of functions which have continuous derivatives up to second-order
in a <z <b, and F has continuous second-order derivatives with respect

to all of its arguments.

Assuming that I(y) has an extremum at some y € C? ([a,b]), then we
consider the set of all variations y + €z for fixed y, where z is an arbi-
trary function belonging to C? ([a,b]) such that z(a) = z(b) = 0. We next
consider the increment of the functional

b
5T = I(y+e2) — I(y) = / o,y +ezy +e2') — F(a,y,y)] da.

(9.4.5)
It follows from (9.4.5) combined with the Taylor expansion of
oOF ,0F
F(r,y+ez, v +e2')=F(z,y,2) +e¢ (za— +z oy )
e2( OF ,0F
— - (946
+2!< 6y+ 6y’> * ( )
that
2
I(y +ez) = I(y) + 6 + %521+--- , (9.4.7)
where the first and second variations of I are given by
b
OF ,0F
ol = — d 9.4.8
/a (z ay oy ) " (848
b
oF  ,0F
81 = dz. A
/a ( En +z By ) x (9.4.9)

The necessary condition for the functional I(y) to have an extremum (that
is, I(y) is stationary at y) is that the first variation becomes zero at y so

that
b
oF , OF
0—6[-/a ( 8 + z 8y)dm (9.4.10)
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which is, by integrating the second integral by parts,

/ba_F_ga_F wa [L2F) g
o L0y dx \ Oy zar Z@y’a_

Since z(a) = 0 = z(b), this means that, for any z,

OF d (OF
— —— (=) =0. 411
Oy dx <8y’> 0 (® )

This is the celebrated Fuler (or the FEuler-Lagrange) equation. In gen-
eral, this is a nonlinear second-order ordinary differential equation with the
boundary conditions that specify the solution curve at the end points x = a
and x = b. This equation and its many applications included the discovery
that the cateroid and the right helicoid are minimal surfaces.

Euler also considered the same problem with the additional constraint

b
/ G(z,y,y")dx = C, (9.4.12)

where C' is a constant. This is called isoperimetric problem because of the
analogy with the classical problem of maximizing the area under a curve
when the perimeter is held constant. Thus, the Euler problem (9.4.4) with
the constraint condition (9.4.12) is equivalent to the original problem but
with F replaced by F'+ AG where A is a suitable constant to be determined.

Euler also generalized the original problem when F = F(z, y, y», y®,
e y(”)) with and without constraints. However, in the simple case without
constraints except that the end points are fixed, he derived the celebrated
equation

OF 4 (OF\ @ (OF N\ a(oF )
dy  dx \ oyM dz? \ 9y dzn \ gy ) —
(9.4.13)

After determining the function y which makes I(y) stationary, the question
of the nature of the extremum arises, that is, its minimum, maximum,
or saddle point properties. To answer this question, the second variation
defined in (9.4.9) is needed, if terms of O(?®) are neglected in (9.4.9) or if
they vanish for case of quadratic F, it follows from (9.4.9) that a necessary
condition for the functional I(y) to have a minimum I(yo) < I(y) at y = yo
is that 621 > 0, for I(u) to have a maximum I(yo) > I(y) at y = yo is
that 621 < 0 at y = yo respectively for all admissible values of z. These
results enable to determine the upper or lower bounds for the stationary
value I(yo) of the functional.
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The Euler-Lagrange variational problem involving two independent
variables is to determine a function u(z,y) in a domain D C R? satis-
fying the boundary conditions prescribed on the boundary 0D of D and
extremizing the functional

I'u(z,y)] = //D F(z,y,u, ug, uy) de dy, (9.4.14)

where the function F' is defined over the domain D and assumed to have
continuous second-order partial derivatives.

Similarly, for functionals depending on a function of two independent
variables, the first variation dI of I is defined by

0 = I(u+ev) — I(u). (9.4.15)
In view of Taylor’s expansion theorem, this reduces to

oI = // [e (WE, + v, Fy + vy Fy) + 0 (%) ] dz dy, (9.4.16)
D

where v = v(z,y) is assumed to vanish on 0D and p = u, and g = u,.
A necessary condition for the functional I to have an extremum is that
the first variation of I vanishes, that is,

0:51:// (vFy + v, Fp 4+ vy Fy) dx dy
D
0 0
_/~/DU<FU_%FP_8_qu> dx dy
e 0
—|—//D _v %Fp—f—a—qu + (v Fp + vy Fy) | drdy
0 0
- F-2r-2F
//Dv< a: 1" " gy q> dx dy
+// E(UF)-I-Q(’UF) dx d (9.4.17)
152 + 5, (v y. A.

We assume that boundary curve 0D has a piecewise, continuously mov-
ing tangent so that Green’s theorem can be applied to the second double
integral in (9.4.17). Consequently, (9.4.17) reduces to

0 0
0=241 // v( 0z P By q) dx dy

+/ v (Fpdy — Fydx) . (9.4.18)
oD

Since v = 0 on 9D, the second integral in (9.4.18) vanishes. Moreover,
since v is an arbitrary function, it follows that the integrand of the first
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integral in (9.4.18) must vanish. Thus, the function u(z,y) extremizing the
functional defined by (9.4.14) satisfies the partial differential equation
oF 0 0
0w oy
This is called the Fuler—Lagrange equation for the variational problem in-

F,=0. (9.4.19)

volving two independent variables.

The above variational formulation can readily be generalized for func-
tionals depending on functions of three or more independent variables.
Many physical problems require determining a function of several inde-
pendent variables which will lead to an extremum of such functionals.

Example 9.4.1. Find u(z,y) which extremizes the functional

I'u(z,y)] = //D (u2 + uz) dedy, D C R (9.4.20)

The Euler-Lagrange equation with F = u2 +u2 = p? +¢? is
o (07 0 ()
Ox \ Op oy\oqg)

Up + Uyy = 0. (9.4.21)

or

This is a two-dimensional Laplace equation. Similarly, the functional

Iu(z,y,2)] = ///D (u +ul +u2)dedydz, DcC R (9.4.22)
will lead to the three-dimensional Laplace equation
Ugg + Uyy + Uz, = 0. (9.4.23)
In this way, we can derive the n-dimensional Laplace equation
VU = Ug gy + Ungzs +* + Ugpz, = 0. (9.4.24)

Example 9.4.2. (Plateau’s Problem). Find the surface S in (x,y, z)
space of minimum area passing through a given plane curve C.

The direction cosine of the angle between the z-axis and the normal
to the surface z = w(z,y) is (14 u2 +u§)7%. The projection of the
element dS of the area of the surface onto the (z,y)-plane is given by

(1 +u + uz)fé dS = dx dy. The area A of the surface S is given by

A= //D (14w + ui)% dz dy, (9.4.25)

where D is the area of the (z,y)-plane bounded by the curve C.
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1
The Euler—Lagrange equation with F' = (1 +p? + q2) 2 is given by

0 z 0]
Tl )+ [ ——— ) =0 (9.4.26)
83;‘ /1+p2+q2 8y /1+p2_|_q2
This is the equation of minimal surface, which reduces to the nonlinear
elliptic partial differential equation

(14 u2) Uga — 2uglyay + (1 + ul) uy, =0. (9.4.27)

Therefore, the desired function u(z, y) should be determined as the solution
of the nonlinear Dirichlet problem for (9.4.27). In general, this is difficult
to solve. However, if the equation (9.4.26) is linearized around the zero
solution, the square root term is replaced by one, and then the Laplace
equation is obtained.

Although Euler and Lagrange laid the solid mathematical foundation
of the calculus of variations geometrically as well as analytically, the sub-
ject had received tremendous attention of Carl G. Jacobi, and Sir William
Hamilton, and then of Karl Weierstrass who first gave a more modern foun-
dation of the theory in his lectures at Berlin between 1865 and 1890 and thus
inaugurated the modern period of the calculus of variations. This period
ended gloriously when the calculus of variations burst into full flower with
the advent of functional analysis, and the 1910 work of Jacques Hadamard,
David Hilbert and Hermann Weyl (1885-1955). During the earlier period,
the problems of calculus of variations were reduced to questions of the exis-
tence of solutions of ordinary and partial differential equations until Hilbert
developed a new method in which the existence of a minimizing function was
established as the limit of a sequence of approximations. At the conclusion
of his famous lecture on ‘Mathematical Problems’ at the Paris International
Congress of Mathematicians in 1900, he assumed the path to be extremal of
I(y) and Hilbert then formulated another derivation of Weierstrass’ excess
function and a new approach to Jacobi’s problem of determining necessary
and sufficient conditions for the existence of a minimum of functional I(y)
and all this without the introduction of the second variation of I. When a
function is over a convex set of constraints, the calculus of variations led to
the theory of variational inequality. In this case, the classical Euler equa-
tions have been replaced by a set of inequalities. Subsequently, Hartman
and Stampacchia (1966) established a very basic variational inequality.

Finally, the calculus of variations entered the new and wider field of
global problems with the modern work of G. D. Birkhoff and Marston Morse



Euler and Differential Equations 295

(1892-1977). They succeeded in liberating the theory of calculus of varia-
tions from the limitations imposed by the restriction to ‘small variations’,
and gave a general treatment of the global theory of the subject with ‘large
variations’. This is followed by the Morse-Smale Index theorem for a global
analysis of variational problems in several variables with applications to the
computation of the Morse-Smale Index of the catenoid and Enneper’s min-
imal surface. Subsequently, the calculus of variations led to a new modern
area known as the Morse Theory, with ramifications in geometry, analysis
and topology, which has become a major part of mathematics and mathe-
matical physics of the twentieth century.






Chapter 10

The Euler Equations of Motion in
Fluid Mechanics

“True Laws of Nature cannot be linear.”

Albert Einstein

“... the progress of physics will to a large extent depend on the
progress of nonlinear mathematics, of method to solve nonlinear
equations ... and therefore we can learn by comparing different
nonlinear problems.”

Werner Heisenberg

10.1 Introduction

Euler’s major work in the field of fluid mechanics was essentially based on
the continuum hypothesis and Newton’s laws of motion. However, his work
provided the basic foundation of mathematical theory of fluid mechanics
which was surrounded by his discovery of the calculus of variations as well
as partial differential equations. He made fundamental contributions to
hydrostatics and hydrodynamics during the period of 1752-1761 and pub-
lished several major articles in these fields in the Mémories de I’Academie
des Sciences de Berlin in 1757. The first of these papers dealt with the
basic general concepts, principles and equilibrium equations of fluid. The
second and the third papers were basically concerned with the equation of
conservation of mass (or the continuily equation) and the Euler nonlinear
equations of motion of compressible fluid flows. Subsequently, he formu-
lated the equations of motion and the continuity equation for an inviscid,
incompressible fluid flows with the first proof of the famous d’Alembert
paradox in an inviscid fluid flow past a rigid body. Historically, considerable
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progress was made on theoretical fluid mechanics during the 18th century
by Jean d’Alembert, Daniel Bernoulli, Alexis C. Clairaut, and Joseph La-
grange. Among these great mathematical scientists, Euler made the most
fundamental contributions to fluid mechanics by establishing his famous
equations of motion. To celebrate Euler’s great contributions to mechanics,
G. K. Mikhailov (2007) writes: “Euler possessed a rare gift of systematizing
and generalizing scientific ideas, which allowed him to present large parts
of mechanics in a relatively definite form.”

Based on his evaluation of Euler’s published papers and books, and
unpublished notebook written in 1725-1727, G. K. Mikhailov (1957) also
gave a new and surprising insight into Euler’s remarkable work on the
theoretical development of fluid mechanics and hydraulics and states:

“It is generally known that the creation of the foundations of modern
hydrodynamics of ideal fluids is one of the fruits of Euler’s scientific activity.
Less well known is his role in the development of theoretical hydraulics, that
is, as usually understood, the hydrodynamic theory of fluid motion under a
one-dimensional flow model. Traditionally — and with good reason — it is
assumed that the foundations of hydraulics were developed by Daniel and
Johann Bernoulli in their works published between 1729 and 1743. In fact,
during the second quarter of the eighteenth century Euler did not publish
even a single paper on the elements of hydraulics. The central theme of
most of the recent historical-critical studies on the state of hydraulics in
that period is the determination of the respective contributions of Daniel
and Johann Bernoulli. But Euler stood, all this time, just beyond the
curtain of the stage on which the action was taking place, although almost
no contemporary was aware of that.”

10.2 Eulerian Descriptions of Fluid Flows

It was Euler who gave the first formulation of Eulerian and Lagrangian
descriptions of fluid flows. In the Eulerian description, the fluid flow is
specified by the velocity field u = u(x,t) as a function of position x =
(r,y,2) € R® and time ¢. In the Lagrangian framework, the fluid motion
is described by the position x = x(s,7) of a fluid particle as a function of
and time 7, where the initial position r = x(s,7 = 0) is used as a label.
The label coordinates s = (a, b, ¢) are assumed to form a continuous three-
dimensional manifold. Thus, the Lagrangian description of the fluid flow
represents a time-dependent mapping from label (initial position) space to



The Euler Equations of Motion in Fluid Mechanics 299

position space. The fluid velocity is given by

u(s,7) = % x(s, 7), (10.2.1)
and the acceleration of the fluid is given by
a(s,7) = 9 u(s,7) = o x(s, T) (10.2.2)
T or arz T -

The Eulerian and the Lagrangian description differ in their choice of
dependent and independent variables. However, the two descriptions are
equivalent. To transform from the Lagrangian description x = x(s,7) to
the Eulerian description u = u(x,t), we have to perform the following
operations:

(i) differentiate x = x(r, 7) with respect to 7 to find u = u(r, 7),
(i) invert x = x(r,7) to derive r = r(x,7), and
(iii) put r = r(x,t) into u = (r,7) to obtain u = (x, t).

On the other hand, to transform from the Eulerian to the Lagrangian
description, it is necessary to solve the ordinary differential equations
i u(x(t),t) (10.2.3)
with the initial data x(¢t = 0) =r for all r
Thus, in modern language, the fundamental quality of the Fulerian
description is the velocity gradient tensor, whereas the main quantity of
the Lagrangian description is the deformation tensor.
Euler first introduced the concept of the material (or convective or total
derivative) in 1770 in the form
D¢ 3(25
Dt~ o TUi= _t
where ¢,; = 0¢/0x;.
When u is known as a function of x and ¢, expression (10.2.4) enables
us to compute (D¢/Dt) as a function of x and ¢. As such, formula (10.2.4)
represents the material derivative in the spatial form. Note that the first
term on the right hand side of (10.2.4), namely, (0¢/0t) represents the
local rate of change of ¢ and the second term, w; ¢,;= (u-V)¢ is the
contribution due to the motion. This second term is usually referred to as
the convective rate of change of ¢.
It can be verified that the material derivative operator
D 0
Dt 8t

+(u-V)o (10.2.4)

+ui( )= +u-V (10.2.5)
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which operators on functions represented in spatial form, satisfies all the
rules of partial differentiation.

We next define the acceleration in spatial form by substituting ¢ = u;
in (10.2.4) so that

Dui 8ui
T + UpUi k- (10.2.6a)
Or,
Du Ou

When u(x,t) is known as a function of x and ¢, expression (10.2.6b)
determines (Du/Dt) directly in terms of x and ¢; this expression (10.2.6b)
serves as a formula for acceleration in the spatial form.

Using the standard vector identity

(u-V)u= %V(UQ) —u x (curlu) = %V(uQ) + (curlu) x u,  (10.2.7)

where u - u = u?, the formula (10.2.6b) can be written in the form

Du 0Ou 1 9
-4 10.2.
i at+2V(u)+wxu, (10.2.8)
where w = curlu is the vorticity vector.
It follows from (10.2.6b) and (10.2.8) that the acceleration vector is

made up of two parts:

(i) the local rate of change of velocity, namely, (%—‘t‘), and
(ii) the convective rate of change of velocity, (u-V)u = 3V (u?) + w x u.

Evidently, the second part is quadratically nonlinear in nature. Thus, the
acceleration depends quadratically on the velocity field, and a given motion
cannot be represented as a superposition of two independent motions in
general.

Euler first (1757) also formulated the equation of motions for a com-
pressible fluid with variable density, p (x,t) in the form

ou 1
- . e 10.2.
8t+(u V)u pr, (10.2.9)
0
8—’; LV (pu) = 0. (10.2.10a)
Or, equivalently, this mass conservation can be expressed as
0]
9P - Vp+ pVu =0, (10.2.10D)

ot
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These equations (10.2.9)—(10.2.10) constitute four scalar nonlinear partial
differential equations in five unknowns u, v, w, p and p so that they need
to be supplemented with a fifth equation expressing the compressibility
properties of the fluid. They are of widespread utility because they describe
the phenomena of propagation of sound waves, as well as being needed to
study any flows of air at speeds of order of 100/ms. Indeed, the phenomena
of sound (or acoustic waves) depend on the compressibility property of a
fluid.

Based on Newton’s Second Law of motion to an inviscid fluid, Euler
(1761) combined the rate of change of total momentum with the internal
pressure and then first formulated his celebrated equations of motion and
the continuity (mass conservation) equation for an inviscid, incompressible
fluid in the form

Ju 1
E—F(u-V)u——;Vp—kF, (10.2.11)
) Ou Ov Ow
divu = 7 + 3y + 5 0, (10.2.12)

where u (z,t) = (u,v,w) is the velocity vector and p (x,t) is the pressure
field at the point x = (z,y, z) and time ¢, p is the constant density and F is
the external force field. These equations (10.2.11) and (10.2.12) constitute
a closed system of four nonlinear partial differential equations with four
unknowns u, v, w and p. So these equations with appropriate initial and
boundary conditions are sufficient to determine the velocity field u and the
pressure p uniquely. The Euler equations of incompressible fluid flow are
widely used for an understanding of observed phenomena of vortex motion
which occurs in a regime where fluid is considered to be incompressible. He
also applied (10.2.11)—(10.2.12) to blood flow in arteries in the human body.
d’Alembert also derived these equations (10.2.11)—(10.2.12) in 1752. In his
revolutionary ballistic research work in response to a royal assignment from
Frederick the Great in 1745, Euler derived the first mathematical proof
of the famous d’Alembert’s paradox in fluid mechanics that an inviscid
potential flow around a rigid body moving with at a uniform speed exerts no
resistance force on the body, and also provided a pioneering mathematical
analysis of subsonic and supersonic air resistances.

More importantly, the Euler equations (10.2.11)-(10.2.12) are widely
used to develop the theory of water waves in oceans under the action of the
body force F = —gpﬁ, g is the acceleration of gravity, k is the unit vector
in the positive z direction. Consequently, the fundamental equations of
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motion of water waves are (see Debnath (1994)) given by

ou 1 ~
5t +(u-Viu= —;Vp—gk, (10.2.13)

V-u=0. (10.2.14)

In problems of water waves, the motion may be taken as irrotational, which
physically means that the individual fluid particles do not rotate. Math-
ematically, this implies that vorticity w = curlu = 0 so that there exists
a single-valued velocity potential ¢ such that u = V¢. The continuity
equation (10.2.14) then reduces to the Laplace equation
o, %9 P D¢
V¢_@+a_y2+ﬁ_0' (10.2.15)

So, the velocity potential ¢ is a harmonic function. This is, indeed, a
great advantage because the velocity field u can be derived from a single
potential function ¢ which satisfies the linear Laplace equation (10.2.15).
So, the velocity potential ¢ is a harmonic function. This is, indeed, a great
advantage because the velocity field v can be derived from a single potential
function ¢ which satisfies the linear Laplace equation (10.2.15).

Representing the free surface S of water by S (z,y, z,t) = n(x,y,t)—2z =
0, the normal velocity of the surface is —S;/ VS| which is equal to the
normal velocity of the fluid, u-n=u-(VS/|VS|) so that

—=—+w-V)S=0 (10.2.16)
which is, in terms of the free surface elevation 1 and the potential
¢ (u=Vop),

M+ Pulle + Gyny — 9> =0 on z=n(z,y,t). (10.2.17)

This is called the kinematic free surface condition.
Using a formula (u- V) u = $Vu? — u x w combined with u = V¢, the
Euler equation (10.2.13) can be rewritten in the form

1
V |6+ 5 (V9) + g +gz| =0. (10.2.18)

This can be integrated with respect to the space variables to obtain the
equation

b1 + % (Vo)? + % +gz=C(t), (10.2.19)

where C' (t) is an arbitrary function of time only (VC = 0) determined by
the pressures imposed at the boundaries of the fluid flow. Since only the
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pressure gradient affects the flow, a function of t above added to the pressure
field p has no effect on the motion. So, without loss of generality, we can
set C'(t) =0 in (10.2.19) and consequently, equation (10.2.19) becomes

1
b+ 5 (Vo)? + % + gz =0. (10.2.20)

This is called Bernoulli’s equation which determines the pressure in
terms of the velocity potential ¢. In particular, equation (10.2.20) yields
the following equation for pressure p at every point of the free surface

z=n(zy 1)
1
¢t+gn+§(v¢)2+%zo on z=n(z,yt). (10.2.21)

On the other hand, the normal velocity of fluid must vanish on a solid
boundary surface, that is,

o¢
u=n- =L =0. 10.2.22
n-u=n-Ve¢ o 0 (10 )
In particular, at a rigid bottom surface z = —h (x, y), the bottom boundary
condition is given by
Oz + Qzhy + dyhy =0 at z=—h(z,y). (10.2.23)

In case of the problem of water waves in an ocean of constant depth h
with a rigid bottom, the bottom boundary condition is

It should be noted that a single linear boundary condition (10.2.22) is re-
quired on a fixed boundary surface. However, two coupled nonlinear surface
conditions are to be prescribed on the free surface (z = 1) because the free
surface elevation function 7 (x,y,t) is involved as an additional unknown
function.

With prescribed atmospheric pressure and given initial conditions, equa-
tions (10.2.15), (10.2.17), (10.2.21), (10.2.23) or (10.2.24) are sufficient to
determine the wave motion in water. These represent the well-known non-
linear system of equations of classical water waves. They can be mathemat-
ically derived from the modern variational principle (see Debnath (1994))
for three-dimensional water waves

51 = 5// Ldxdt =0, (10.2.25)
D

where the Lagrangian L is assumed to be equal to the pressure so that

n(x,t) 1
L= —p/ [qbt + 2 (V9)* + gz| dz, (10.2.26)
—h(z.y) 2
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where D is an arbitrary region in the (x,t) space, and ¢ (x,y, z,t) is the
velocity potential of an unbounded fluid lying between the rigid bottom
z = —h(x,y) and the free surface z = 7 (z,y, ).

There is no doubt that the Euler equations in both incompressible and
compressible fluids have provided the fundamental basis for both classi-
cal and modern fluid mechanics. Several major nonlinear evolution equa-
tions including the Boussinesq equations, and the Korteweg—de Vries (KdV)
equation have been derived from the Euler equations (see Debnath (2005)).
During the second half of the twentieth century, many modern evolu-
tion equations including the Kadomtsev—Petviashvili (KP) equation, the
nonlinear Schrédinger (NLS) equation, the Johnson equation, and Davey—
Stewartson equations (see Debnath (2005)) have also been derived from the
Euler equations.

Although the Euler equations are over 250 years old, the existence as
well as uniqueness of solutions is still an unsolved challenging problem.
Another related open question is the behavior of solutions at a finite time.
Many numerical simulations of the three dimensional Euler equations have
been carried out. Solutions are found to behave very wildly. So, it is very
difficult to determine whether a numerical study indicates a breakdown
(or instability) of solutions at a finite time. In his original paper, J. T.
Stuart (1987) provided a new insight into the possibility of solutions of
the nonlinear Euler equations developing a singularity in a finite time. His
study of the problem of the evolution of wave motion in a thin boundary
layer or shear flow, particularly in relation to the development of turbulence
(see also Moffatt, 1985), is closely associated with the natural presence of
three-dimensional vortex structures in the flow. These longitudinal vortices
in the flow, whose axes are aligned parallel to the main stream, suffer from
convection, stretching, and tilting and produce thereby local shear layers
which becomes more and more intense as t — oo. These nonlinear features
of the flow lead to the possibility that the flow field can develop a singularity
in a finite time. In other words, the solutions of the Euler equations in an
inviscid flow under appropriate initial conditions may become singular in a
finite time. The findings of Stuart have already received a strong support
from somewhat related and independent works of Calogero (1984), Russell
and Landahl (1984). Because singularities (see Stuart (1987)) cannot be
ruled out, the mathematical question of the blow up problem in the Euler
equations is whether singularities can arise in finite time from smooth initial
velocities with finite kinetic energy. This is a major unsolved problem of the
nonlinear partial differential equations theory. Physically, it makes sense
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to admit solutions with singularities in them, the concept of solution can
possibly be extended to that of weak solution of the Fuler equations in
three dimensions. Shnirelman (1977) has demonstrated the nonuniqueness
of the weak solution of the three dimensional Euler equations. However,
this problem has not yet completely been solved. Thus, the study of the
Euler equations, which constitute the fundamental equations of modern
fluid mechanics, is still one of the most challenging and meaningful problems
in the nonlinear partial differential equations.

Subsequently, considering internal processes that lead to energy dissi-
pation, in 1822, Louis M. H. Navier (1785-1836), and in 1845, George G.
Stokes (1819-1903) formulated a celebrated equation, universally known as
the Navier—Stokes equations

Ou fu-Vu—F-1 Vp +vV2u (10.2.27)
ot p
together with the continuity equation (10.2.12), where v > 0 represents
the kinematic viscosity which is constant at constant temperature. Obvi-
ously, their starting point was Euler’s equations of motion of an inviscid
incompressible fluid which led them to generalize Euler’s equations with
viscosity. However, there are certain major difficulties associated with the
three-dimensional Navier—Stokes equations as there are no general results
for these equations on the existence of solutions, uniqueness, regularity, and
continuous dependence of solutions on the initial data. This remains as the
challenging unsolved problems of the 21st century.

In terms of some representative length scale ¢, and velocity scale U, it
is convenient to introduce the nondimensional flow variables

= —, = —, = -, = ——=. 10.2.28
T o N Tr P T ( )
In terms of these nondimensional variables, equation (10.2.27) without

the external force (F = 0), can be written, dropping the astericks, as

Ju 1,
En +(u-V)u=-Vp+ EV u, (10.2.29)

where R = (U{/v) is universally called the Reynolds number. This is one
of the most fundamental dimensionless parameters needed for the specifica-
tion of the dynamical state of viscous flow fields with geometrically similar
boundary and initial conditions. Physically, it measures the ratio of inertial
forces of order (U?/¢) to viscous forces of order (vU/(?), and hence it has

a special physical significance.
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There are certain major difficulties associated with the Navier—Stokes
equations. First, there are no general results for the Navier—Stokes equa-
tions on existence, uniqueness, regularity, and continuous dependence on
the initial conditions. Second, there are indications that solutions of the
three-dimensional Navier—Stokes equations can be singular at certain places
and at certain times in the flow. Third, in view of the strong nonlinear con-
vective term in (10.2.27) or (10.2.29), there is no general analytical method
of solution for an arbitrary Reynolds number, R (or viscosity v).

In absence of the external forces (F = 0), it is preferable to write equa-

tion (10.2.27) in the form (since u x w = Vu? —u-Vu, u? = u - u)
1
% —uxw=-V (g + §u2) —u-Vu (10.2.30)

We can eliminate the pressure from equation (10.2.30) by taking the
curl of the equation (10.2.30) so that it becomes

Ow

v curl (u x w) +vViw, (10.2.31)
which reduces to, by divu = 0 and div curlu = 0,
68—‘: =(w-V)u—(uV)w+rvViw. (10.2.32)
Or equivalently,
%‘: =w-Vu+rVie. (10.2.33)

This is known as the vorticity transport equation. The left hand side of
(10.2.32) represents the rate of change of vorticity. The first two terms on
the right-hand side represent the rate of change of vorticity due to stretching
and twisting of vortex lines. The last viscous term describes the diffusion
of vorticity by molecular viscosity.

Mathematically, the Navier—Stokes equations (10.2.27) or (10.2.29) are
valid for all values of v (or R). In the limit as v — 0 (or R — o0),
the second-order Navier—Stokes equations reduce to the first-order Euler
equations (10.2.11) with F = 0. So, the Navier-Stokes equations lead to
a singular perturbation problem. In the limit of zero viscosity (R — o0),
there exist thin layers near the boundary, where the significant change from
a viscosity dominated behavior to an inviscid behavior takes place, or at
least that is the physical nature in quiescent situations near flat or curved
boundaries. In other words, the effect of viscosity is dominant within the
boundary layers, however small the viscosity ¥ may be, and hence, the lin-
ear viscous term in the Navier—Stokes equations must be retained to satisfy
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all necessary boundary conditions. In classical inviscid theory (v — 0 or
R — o0), the boundary layer does not exist, so that an inviscid fluid is free
to slip on the surface of the solid body, and only the normal component of
the velocity is zero on the surface. However, no general and rigorous math-
ematical proof of Ludwig Prandtl’s (1875-1953) 1910 remarkable discovery
of boundary layer hypothesis has been available yet, but it is strongly sup-
ported by many experimental observations of particular fluid flow models,
and hence, the Prandtl hypothesis has been applied successfully to many
different kinds of flow field. So, boundary layers are very real but difficult
to prove rigorously, especially, for curved domains and for time-dependent
fluid flows. At present, the problems of the zero viscosity limit is still un-
solved in two space dimensions. Recently, Barenblatt and Chorin (1997,
1998) raised questions about the physical problems of boundary layers and
challenged the classical Prandtl boundary layer theory. Indeed, in general,
the double limits ¢ — co v — 0 involved in solutions of the Navier—Stokes
do not commute. This is most clearly observed for the case of two dimen-
sional Navier—Stokes equations without external force field. In this case, any
smooth solution of the Euler equations is a finite-time inviscid limit, and
the infinite-time inviscid limit is wunique. The study of the zero-viscosity
long-time statistics including the Kolmogorov spectrum is still an open
problem. In his 1934 pioneering work, Jean Leray (1906-1998) proved the
existence of global weak solutions of the three dimensional Navier—Stokes
equations. It was shown by Caffarelli et al. (1982) that singularities, if any,
of the Navier—Stokes are confined to a space-time set of dimension less than
one, but their uniqueness has not yet been proved. The existence of weak
solutions of the Navier—Stokes equations that dissipate energy by constant
flux of energy, in the whole space, in the correct function space has not yet
been established. The study of the zero viscosity limit (v — 0 or R — 00)
in bounded domains with boundaries is also incomplete.

Finally, it is interesting to point out that the Navier—Stokes equations
agree well with experiments in real fluids under many and varied situations.
Numerical simulations of the three-dimensional Navier—Stokes equations ex-
hibit no evidence of breakdown (or instability). The Euler equations are
simply the limiting cases of zero viscosity of the Navier—Stokes equations.
However, solutions of the Euler equations behave very differently from so-
lutions of the Navier—Stokes equations, even when viscosity is very small.






Chapter 11

Euler’s Contributions to Mechanics
and Elasticity

“It is precisely on this principle that all other principles must
be based, such as those already used to determine the motion
of rigid and fluid bodies in mechanics and hydraulics and those
as yet unknown that will be required in order to deal with both
the aforementioned cases of rigid bodies, and the many other
cases concerning fluid bodies.”

Leonhard Euler

“Euler’s general and final statement of the principles of linear
momentum and moment of momentum”, representing “the fun-
damental, general, and independent laws of mechanics, for all
kinds of motions of all kinds of bodies.”

Clifford Truesdell

11.1 Introduction

Euler made some landmark contributions to the mechanics of particles and
of flexible elastic bodies and elasticity. Based on Newton’s remarkable work
on mechanics, Euler embarked on a major study of particle dynamics and
dynamics of rigid bodies which were published in his first two large volumes
on Mechanica in 1736. In his memoir “Discovery of a new principle of
mechanics”, presented to the Berlin Academy in 1750, Euler described the
principle he had discovered — “a general and fundamental principle of the
whole of mechanics.” In this memoir, Euler went further to say that: “It
is precisely on this principle that all other principles must be based, such
as those already used to determine the motion of rigid and fluid bodies in
mechanics and hydraulics and those as yet unknown that will be required
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in order to deal with both the aforementioned cases of rigid bodies, and the
many other cases concerning fluid bodies.”

In the Preface of his first volume, Euler expressed his views of Newton’s
synthetic method as follows:

“However if analysis is needed anywhere, then it is certainly in mechan-
ics. Although the reader can convince himself of the truth of the exhibited
propositions, he does not acquire a sufficiently clear and accurate under-
standing of them, so that if those questions be ever so slightly changed, he
will not be able to answer them independently, unless he turn to analysis
and solve the same propositions using analytic methods. This in fact hap-
pened to me when I began to familiarize myself with Newton’s Principia
and Hermann’s Phoronomia; although it seemed to me that I clearly un-
derstood the solutions of many of the problems, I was nevertheless unable
to solve problems differing slightly from them. But then I tried, as far as I
was able, to distinguish the analysis [hidden] in the synthetic method and
to my own ends rework analytically those same propositions, as a result
of which I understood the essence of each problem much better. Then in
the same manner I investigated other works relating to this science, scat-
tered here, there and everywhere, and for my own sake I expounded them
[anew] using a systematic and unified method, and re-ordered them more
conveniently. In the course of these endeavors not only did I encounter a
whole series of problems hitherto never even contemplated — which I have
very satisfactorily solved —, but I discovered many new methods thanks
to which not only mechanics, but analysis itself, it would seem, has been
significantly enriched. It was thus that this essay on motion arose, in which
I have expounded using the analytic method and in convenient order both
that which I have found in others’ works on the motion of bodies and what
I myself have discovered as a result of my ruminations.”

Unlike the work of his predecessors, his method in this area were distin-
guished by the rigorous and systematic application of mathematical analy-
sis. He provided the basic foundation of analytic mechanics. He first gave
a remarkable mathematical analysis of the kinematics and dynamics of a
point mass both in vacuum and in resisting medium. His study of motion
of a point mass under a central force represents an extension of Newton’s
Principia and became a remarkable introduction to his further subsequent
studies in celestial mechanics and astronomy. In 1764, Euler published his
great third volume of Mechanica entitled Theory of Motion of Rigid Bod-
ies. In these three volumes of work, he first formulated the equations of
motion of a particle and then applied them systematically in finding ana-
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lytical solutions of many dynamical problems. More importantly, he first
made stability analysis of solid elastic bodies in various configurations with
critical parameters determining loss of stability. In order to describe Euler’s
famous Mechanica, J. L. Lagrange’s praise of Euler is worth quoting: “it
must be acknowledged as the first substantial work in which analysis was
applied to study of motion.”

In spite of Newton’s remarkable work on mechanics, in 1752, Euler
formulated the complete general principle of linear momentum which states
that the total force on a solid body is equal to the rate of change of the total
momentum of the body. Later in 1775, he also discovered the principle of
moment of momentum (that is, the angular momentum) which asserts that
the total torque on a body about some fixed point is equal to the rate of
change of the moment of momentum of the body about the same point. In
his essay entitled A new method of determining the motion of rigid bodies
and FEuler’s formula presented at the St. Petersburg Academy in 1775,
Euler announced for the first time the six equations of motion of a rigid
body representing the laws governing the linear momentum and the angular
momentum. In 1968, Clifford Truesdell (1919-2000) described the laws
represented by these equations “Euler’s general and final statement of the
principles of linear momentum and moment of momentum”, representing
“the fundamental, general, and independent laws of mechanics, for all kinds
of motions of all kinds of bodies”.

Historically, the classical theory of elasticity is concerned with the study
of deflection of elastic beams in various geometrical configurations and this
illustrates many new kinds of phenomenon. The bending of a beam of arbi-
trary cross section by end couples is regarded as one of the oldest branches
of the theory of elastic stability which is of special mathematical interest.
FEuler’s famous investigation of the stability of an initially straight elastic
beam under progressive end loads provided a complete analysis of the be-
havior of the beam after buckling has occurred. Euler’s theory remained for
nearly two centuries the only complete investigation of the post buckling
behavior. The fundamental law describes the curvature s (or the radius of
curvature, R where k = %) of a beam bent by couples of magnitude M
(often called the bending moment) applied to its ends so that M is constant
along the beam. This law, known as the Fuler—Bernoulli law, is expressed
mathematically by

M = % =k FEI, (11.1.1)

where F is called Young’s modulus of elasticity and I is called the moment
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of inertia of the cross section of the beam. The product ET is called the
flexural rigidity of the beam. In an actual beam, M is a function of x
and y(x) is the deflection of the beam. Equation (11.1.1) represents the
curvature at a point of the beam in terms of the bending moment at that
point. The radius of curvature R is given in terms of the deflection y(x) by
1 yI/

K== (DR (11.1.2)
In problems where the slope, 3’ of the beam is small and y'? is negligible,

so that k(z) ~ y” and (11.1.1) can be replaced by

M(x) = EIy". (11.1.3)

This equation can easily be solved under appropriate boundary conditions.
However, for problems of large deflections, the equation (11.1.1) is a com-
plete nonlinear equation which is difficult to solve except for some simple
cases.

This chapter is devoted to Euler’s major contributions to solid mechan-
ics and elasticity. Special attention is given to some remarkable impact
of the Euler angle formulation, the Euler axis formulation and the Euler—
Rodrigues quaternion formulation on modern aerodynamics, in general and
aircraft dynamics, in particular.

11.2 Euler’s Work on Solid Mechanics

Euler first introduced the term, moment of inertia as well as the existence
of principal axes and moment of inertia of a rigid body. This was followed
by his investigation of motion of a rigid body about a fixed point in it
under no force. With A, B, C as the principal moments of inertia of a
rigid body about the three perpendicular axes fixed in it and p, ¢, r as the
resolved parts of the angular velocities about the principal axes, Fuler gave
the equations of motion of the body

A % = (B - C)qr, (11.2.1)
B % = (C — A)pr, (11.2.2)
C % = (A— B)pq. (11.2.3)

The equation for conservation of energy is given by

% (Ap® + Bi* + Cr?) = E, (11.2.4)
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where E denotes the total energy. He also wrote the equation

A?p* + B2¢? + C*r% = M2, (11.2.5)
where M? denotes the total angular momentum about the fixed point and
M is a constant, as there is no external force and the reaction passes through

the fixed point.
Expressing ¢2, 2 in terms of p?, we obtain

¢ = —azp’, 1? = By — Bap?,
where
M? - 2EC A(A-C) M? - 2EB A(A - B)
alzi’ a2:7’ /81:77 62:77
B(B-20) C(B-0C) C(C - B) C(C - B)
Substituting in (11.2.1), we obtain
p tp_
/ dp - / B=Cu (11.2.6)
0 /(a1 — ap?)(B1 — Bap?) o A

Again putting , /g—fp = u, we can deduce
)\t:/ du 7
0 V- 21— k)

_a _ JBiaz (B-C
where k2 = 2182 apd ) = Y& 2,4( )

Braz?

(11.2.7)

We therefore derive the result in terms of Jacobi’s elliptic function (see
Dutta and Debnath (1965))

u = sn (M, k). (11.2.8)

As a matter of fact, we obtain p, ¢ and 7 in terms of elliptic functions

P = /ﬂ sn (M, k), (11.2.9)
(6%)

q = /a1 cn (Mt k), (11.2.10)
r=/Brdn (Mt k). (11.2.11)

An observational evidence revealed that the Earth does exhibit a phe-
nomenon known as the Fulerian nutation of its axis. The Euler equations
(11.2.1)-(11.2.3) are used to investigate this phenomenon. Although the
Earth is not exactly a sphere, it has symmetry about its axis. Neglecting
the moments of any external forces due to the Sun, the Moon and plan-
ets acting on the Earth, Euler’s equation (11.2.1)-(11.2.3) with two equal

principal moments (A = B) become
dg

dp _ —(C - ar _
A =(A=C)r, A= =(C=Apr, C— =0, (11.2.12)
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where the z-axis is the axis of the Earth. It follows the last equation in
(11.2.12) that

r = w, = constant = n. (11.2.13)

Writing n(C' — A)/A = o, the first and the second equations can be written
as

%—l—aq:O and %—ap:O, (11.2.14)
which gives the equation
p+o*p=0. (11.2.15)
This admits the solution
p = wy = acos(at + ¢€), (11.2.16)
where a and € are constants and
qzwyz—épzasin(at—ks). (11.2.17)

This leads to p? + ¢® = w? + wZ = a? so that the angular velocity vector
w = (Wg, wy,w.) is of constant magnitude v'a? + n? and it makes a constant
angle § = tan™! (%) with the Earth’s axis. This vector w, rotates around
the Earth’s axis with constant angular velocity o. In other words, if the
Earth’s axis of rotation does not coincide with the geometrical axis, the
former rotates round the latter. This phenomenon is known as the Eulerian
nutation.

Euler first investigated one of the oldest eigenvalue problem concerning
the buckling of a long homogeneous vertical column of uniform cross section
and length ¢ subject to a compressive axial force or load P applied to its
top. We recall equation (11.1.3) as

M(z) = EIy". (11.2.18)

When the column is deflected a small amount y from the vertical axis due to
the constant load P, the bending moment is M (x) = — Py so that equation
(11.2.18) reduces to the form

EIy" + Py = 0. (11.2.19)

Since the column is assumed to be simply supported at the endpoints, there
can be no displacement at these points. Thus, equation (11.2.19) is to be
solved with the boundary conditions y(0) = 0 = y(¢). This constitutes
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an eigenvalue problem in 0 < x < ¢. The solutions for the eigenvalue

A = (P/EI) and the corresponding eigenfunctions are
2.2

A=A, = (P,/EI) = "é;

and  y,(x) = A4, sin (n_;rx) (11.2.20ab)

where n =1, 2,3, ---.

If P is sufficiently large, the vertical column would deflect or buckle.
In other words, the column would buckle only when the applied load P
is one of the values P, = (n?w2EI)/¢* which are called the critical Euler
loads. The smallest load Py = (72 EI)/(? that leads to buckling is called the
Euler critical load, and the corresponding deflection, y1(z) = A; sin (”Tf”)
is called the first (or fundamental) buckling mode. From a physical point
of view, this result can be interpreted as follows. If P < P, the critical
Euler load, the only solution is y = 0 and the column is undeflected. This
situation is stable, that is, if the column is slightly bent, it will return to
the original straight vertical form. When P = P;, another solution also
becomes possible in which the form of the column is y; (z) and this solution
is stable.

In general, the differential equation governing the deflection of an elastic
the column is given by

d? d?y d?y
— | EI — P— = £. 11.2.21
dx? ( dm2> * dx? 0, O<z< ( )
Or, equivalently,
v () + K%y’ =0, 0<z<{, (11.2.22)

where k? = (P/EI).

For a simply supported horizontal beam or vertical column, there is no
displacement or bending moment at the endpoints. Mathematically, such
conditions are prescribed as

y(0) = y"(0) = 0 =y(0) = y"(0). (11.2.23)
The general solution of the fourth order equation (11.2.22) is given by
y(z) = Cy + Cox + Cs cos kx + Cy sin k. (11.2.24)

Using the boundary conditions at = 0 gives C; = C3 =0 and at x = ¢
leads to the pair of equations

Cyl+ Cysinkl =0, k% Cy sinkl = 0. (11.2.25)
For nontrivial solutions to exist, we must choose k = (%) and set
Cs = 0. Hence, the eigenvalues and corresponding eigenfunctions are
n?n? . /nTX
k2 = 2 Yn(x) = Cyp sin (7) , (11.2.26)



316 The Legacy of Leonhard Euler — A Tricentennial Tribute

where Cy,, are constants and n =1, 2, 3, ---.
For these admissible values of k2, the critical buckling loads are
n?m2ET
2
The largest load that the beam can withstand before buckling is the Euler
load

P, = n=1,23--. (11.2.27)

m?EI
P = 2R (11.2.28)
corresponding to the fundamental buckling mode
y1(z) = Cyy sin (W—Z) . (11.2.29)

In the case of an inhomogeneous column with the ends fixed by hinges
so that the flexural rigidity varies along the column, that is, EI = ¢(x),
where ¢(x) is a given positive function. Consequently, equation (11.2.19)
becomes

P
1
Y+ ) y=0. (11.2.30)
Putting (y'/y) = u so that y = exp [ [ udz], equation (11.2.30) reduces to
the first order nonlinear equation

du 9 P
— —— =0. 11.2.31
T +u”+ ) ( )
Euler worked out an example with ¢(z) = ko(a + Bx)* where A = 4,
and obtained the exact solution

) vlx
= A(at _ 11.2.32
V(o) = Alat + frysin | 2 (11232
where v = /P, /Ko so that the critical load is
2
Py = ko (%) a2(a + B)>. (11.2.33)

Subsequently, Euler extended this work to study the elastic stability of
conical columns, and then the stability of an inhomogeneous elastic rod
with arbitrary degree of inhomogeneity A. All these reveal that Euler made
stability analysis of various geometrical configurations with the critical pa-
rameters determining loss of stability.

As early as 1739, Euler investigated the phenomenon of resonance for
a sinusoidal oscillation of simple harmonic motion. In his later work, he
expanded the concept of resonance in the theory of forced vibrations. He
gave an explanation of the phenomenon of resonance in his article “On a
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new type of oscillations”, where he investigated the problem of forced linear
oscillations of a simple harmonic oscillator under the action of a harmonic
load and obtained a solution in an integral form. In a special case where
the frequency of the forcing function is equal to the natural frequency of
the harmonic oscillator, his solution predicted an unbounded growth of
the oscillations. Among many different models exhibiting resonance phe-
nomenon, we consider an example of the transverse vibrations of an elastic
beam of uniform cross section and length ¢ so that the end = 0 is hinged,
that is, the displacement is zero at = 0, and the end = = £ is hinged on a
support which moves parallel to y-axis in a simple harmonic manner. With
no external force acting along the beam, the displacement function y(z,t)
satisfies the partial differential equation
2 4

m%—kEl’%:O, O<ax<d, t>0, (11.2.34)
where m is the mass of the beam per unit length. If the beam is initially
at rest along the z-axis, the appropriate initial and boundary conditions of
this problem are

y(x,0) =0 =y (z,0) 0<z <, (11.2.35)
y(0,t) = 0 =y,,(0,t) >0, (11.2.36)
y(l,t) = Asinwt, yze(¢,t) =0, t>0, (11.2.37)

where A is a constant and w is the frequency of the support.
Making reference to Debnath and Bhatta (2007), the Laplace transform
y(z, s) of y(z,t) satisfies the following boundary problem

24
a w—i—s y =0, 0<a<d, (11.2.38)

Aw
y = Yzz(0, = Yza éy =V, 7] e, = -7, 11.2.
HO0.8) = Buel0.8) = Beull, ) = 0, 5(6,9) = o (112,39

where a? = (EI/m).
It is convenient to write s = iap? so that s> = —a?p*. Then the general
solution of (11.2.38) is given by

y(x, 8) = c1 sinpx + ¢ cos px + ¢z sinh px + ¢4 cosh px, (11.2.40)

where the constants ¢’s can be functions of the parameter s, and are deter-
mined by (11.2.39). The solution (11.2.40) becomes

_ Aw sin pzx sinh pf + sinh px sin pf
= . . 11.2.41
gz, s) 52 4+ w? 2 sin pl sinh pl ( )
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This solution is the analytic function of s except at points where the de-
nominator vanishes. The point s = 0 is a removable singularity, and the
singular points of §(x, s) are

ZTL27T2a

§ =+iw, s==£

5 =Fiwn, n=12. (11.2.42)

If w is different from all the numbers w,,, the derivative of the denominator
in (11.2.41) does not vanish at any of the points (11.2.42), nor does the
numerator except for particular values of x. Those points are therefore
simple poles of g(x,s). Using the theory of residues at the simple poles,
the displacement function has the form

y(x,t) = ap(z) cos [wt + Oy (x Z an(x) cos [wnt + 0 (x)], (11.2.43)

where ao(z) and a,(x) are known.
If w is equal to one of the numbers w,, = (n’r%a) /€%, then y(z, s) has
a double pole at the points s = +iw,, y(z,t) contains terms of the type

tan(x) cos [wnt + O, ()], an(x) #£0 (11.2.44)

which tends to infinity as ¢ — oo, and hence, represents an unstable so-
lution. This unstable oscillatory solution is called resonance, and w, are
called the resonant frequencies.

In case the hinge at x = £ is kept fixed and a simple harmonic bending
moment acts on that end of the beam, the conditions at x = ¢ have the
form

y(,t) =0, Yoz (£,1) = Asinwt. (11.2.45)

In this case, the solution (z,s) then has the same denominator as it
does in equation (11.2.41). So, resonance occurs at the resonant frequencies
wy, as given above.

Another resonance model arises when both ends of a beam of length
{ are built into rigid supports. The beam is initially at rest with no dis-
placements. A simple harmonic force per unit length acts along the entire
span in a direction normal to the beam so that the transverse displacement
satisfies the equation

2 4
gtg +a % = Asinwt, (11.2.46)
where a? = (EI/m). In this case, resonance occurs when w = (4aa?/{),
where «, is root of the transcendental equation tan a« = — tanh «.
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If a compressive load is applied impulsively to the ends of an elastic
beam or rod, then the shape at which instability occurs differs from that
obtained in cases static loading. The main difference arises in the situation
that under dynamic loading the form of the buckling develops at a high fre-
quency. In other words, the loss of stability in a beam occurs in a harmonic
range higher than in the statical Eularian problem. Thus, many problems
concerning the stability of elastic beams or rods under impulsive loading
cannot be explained in terms of the statical analysis of stability. It is then
necessary to use the dynamic equation of small deformations of the beam
in the form

0%y oy 0%y
— +FI—+P— = 11.2.47
" o2 * ozt * Ox? f(@), ( )
where f(x) is the initial deformation. Such problem is solved with the
boundary conditions

y(z,t) = Ypo(x,t) =0 for z=0 and x=~¢. (11.2.48)

The appropriate solution of this problem is assumed in the form of a
Fourier sine series

y(a,t) = > Y(#)sin (n—zx) . (11.2.49)

If the initial deformation function f is also expanded in a Fourier sine
series as

flz) = i B, sin (?) : (11.2.50)

where B, are the Fourier coefficient substituting (11.2.49) and (11.2.50) in
equation (11.2.47) gives
a2y, TiEI ( , P

R —E>Yn:Bn, (11.2.51)

where P, = (72E1I)/{? is the critical Euler load. Equation (11.2.51) admits
sinusoidal solution provided n? > (P/P;) and exponential solution if n? <
(P/Py) leading to instability as ¢t — oc.

Many other related statical or dynamical problems of the Euler—
Bernoulli equation for the vertical deflection of an infinite elastic beam
on an elastic foundation under the action of prescribed load with or with-
out damping have also been investigated by many authors including Stadler
and Shreeves (1972), Sheehan and Debnath (1972) and Debnath and Bhatta
(2007).

m
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Based on the classical work of Euler, considerable new progress has been
made on further extension and development of the analysis of vibrations to
elastic systems under periodic forces. At the same time, new questions con-
cerned with oscillations and stability of elastic systems subject to periodic
forces and the related topic of parametric resonance have also been investi-
gated in great details. Many new and interesting results dealing with elastic
viscoelastic, and hydroelastic properties emerging in problems of paramet-
ric resonance. On the other hand, approximate solutions of the inherently
nonlinear problem of elastic stability and post-buckling behavior have been
discussed by many authors including Friedrichs and Stoker (1941) and Koi-
ter (1943). A more general analysis which is rigorous in an asymptotic
sense for the initial state of post-buckling behavior has been developed in
1940s. It has been shown that the initial state of post-buckling behavior
is determined completely by the stability or instability of equilibrium at
the critical load itself. In other words, the initial state of the post-buckling
behavior is governed by the answer to the question whether the critical
bifurcation point still belongs to the stable part of the fundamental branch
of equilibrium or to the unstable part. This equation can only be answered
by the study of higher order variations of the potential energy.

In the twentieth century, several authors including Nikolai (1939), Din-
nik (1950), Ishlinkskii (1954), and Panovko and Gubanova (1964) made
stability and bifurcation analyses of columns, beams, elastic and viscoelas-
tic bodies. Euler’s remarkable work on the stability analysis of elastic
systems has been developed much further in the nineteenth and twentieth
centuries because of the tremendous need for solving new physical and en-
gineering problems. Many subsequent attempts have been made to apply
Euler’s analytical methods to problems of elastic stability in both conser-
vative and non-conservative systems. Among others, Bolotin’s (1961) book
on Nonconservative problems in the theory of elasticity is a good example
of recent developments of the theory elastic stability which brings together
within the framework of a very general approach to many nonconservative
dynamical problems including the problems of aeroelasticity and problems
of instability in high-speed rotors.

11.3 Euler’s Research on Elastic Curves

The discovery of Robert Hooke’s (1635-1703) famous law of proportionality
of stress and strain in 1660, and the formulation of the general equations of
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equilibrium and formulation of motion by Louis M. H. Navier in 1821 are the
two great landmarks in the history of elasticity. In 1705, James Bernoulli
first investigated the elastic curve (or elastica) produced by the resistance of
a bent rod from the extension and contraction of its longitudinal filaments.

In 1727, while he was in Basel, Fuler began his research on oscilla-
tions of an elastic ring. He then considered elastic curves (or elastica) in
his paper entitled ‘Solution of the problem of finding the curve formed by
an elastic band loaded by arbitrary forces at each of its points’ published
in 1728. In this work, he provided an unified treatment of several elastic
curves and also derived a differential equation which described the elastica
including the catenary, the velaria, and the linteria. His further research
on elastic curves was strongly motivated by a series of correspondence with
Daniel Bernoulli during 1738-1744. In particular, in his letter to Daniel on
October 20, 1742, Euler suggested the use of a variational principle for the
study of elastic curves. He formulated the problem as follows: “Among all
curves of prescribed length that not only pass through points A and B, but
also tangential at those points to prescribed straight lines [through A and
B], determine that one for which the expression f 4s is least,” where ds
is the arclength and R is radius of curvature of the curve. Euler’s major
research in elasticity was published in an appendix, De Curvis Elastica, to
his 1744 monumental treatise on the Calculus of Variations entitled Metho-
dus inveniendi lineas curvas maximi minimive proprietate guardentes, ...
(A method for finding curves with maximal or minimal properties, ...). In
this appendix, he announced a mathematical analysis of elastic curves and
also acknowledged the outstanding contributions of Daniel Bernoulli in the
introduction to his treatise. Euler’s appendix De Curvis Flastica was trans-
lated into English by Oldfather et al. (1933) under the title “Leonhard
Euler’s Elastic Curves”. It is worthy to note that Euler began his appendix
with a discussion of some metaphysical principles, and then described the
universal applicability of the principles of maxima and minima as follows:
“For since the fabric of the Universe is most perfect and the work of a most
wise Creator, nothing at all takes place in the Universe in which some rule
of maxima or minima does not appear.”

In his De Curvis FElastica, Euler gave mathematical analysis of many
problems of elasticity dealing with deflection of a thin elastic rod under a
terminal load, a complete classification of nine distinct equilibrium forms
of elastic curves, curvature of elastica and oscillations of elastica in many
different geometrical configurations. This work led Euler to introduce the
fundamental idea of elastic stability of linear and nonlinear problems, and
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to discover the resonance phenomenon and bifurcation analysis. His ma-
jor work on dynamics of elastic bodies was concerned with the study of
vibrating strings, rods, membranes, columns and plates. He made many
invaluable contributions to major problems of elasticity, resistance of ma-
terials, and structural mechanics.

(i) The Euler Problem of Elastica

The problem is to determine the shape of a thin rod, straight and pris-
matic in the unstressed state, under the action of forces and couples applied
at its end points only. When the rod is bent in a principal plane under the
action of a force F' applied at the end from which s is measured, the central
line becomes a plane curve and there is no twist. This corresponds to the
Kirchhoff kinetic analogue which is a rigid pendulum of weight F', turning
about the fixed horizontal z-axis. The motion of the pendulum is governed
by the energy equation and the initial data. We assume that § = 0(s) is
the angle which the tangent of the central line at any point makes with the
line of action of the applied force F', and drawn in the sense of increasing s.
The shape of the curve is called elastica and determined by the equilibrium
equation

2

d<0 .
_dSQ + Asinf = O’ (1131)
F

where A = &, and B is the flexural rigidity of the plane of bending. The
shape of elastica is different depending on whether there are or are not
inflexions.

The first integral of (11.3.1) is given by

2
% (Z—Z) —Acosf =C, (11.3.2)

where C' is an arbitrary constant.

At an inflexion, % = 0 and the flexural couple vanishes so that the rod
can be the shape of inflexional elastica by terminal force alone, without
couple. The kinetic analogue of the inflexional elastica is an oscillating
pendulum. On the other hand, when the rod takes the form of a non-
inflexional elastica, both terminal forces and couples are required. The
corresponding kinetic analogue is a revolving pendulum when there are no
terminal forces, the rod is bent into an arc of a circle, and the kinetic
analogue is a rigid body revolving about the horizontal axis that passes
through its center of gravity.

We consider two forms of the elastica: (a) inflexional or (b) non-
inflexional elastica according as there are or are not inflexions.
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(a) Inflexional Elastica
If s is measured from an inflexion and o = 6(0), equation (11.3.2)
assumes the form

do\?
e 2\ (cosf — cos ) (11.3.3)
s

2
(%) = 4\ (sin2 % — sin? g) . (11.3.4)

This gives the solution

9 o 0\ 2
2V s = / <sin2 5 sin? —) de. (11.3.5)
0

or equivalently

2

Substituting sin% = uk, k = sin §, we obtain a standard elliptic integral

(see Dutta and Debnath (1965)) in the form

“ du
2\/Xs=/0 T (11.3.6)

(1= k7))
This gives the solution in terms of the Jacobi sn function with modulus k:
u(s, k) = sn(vVAs, k). (11.3.7)

In fact, this represents the exact solution of the nonlinear problem of the
inflexional elastica.

In order to determine the shape of the elastica, we take (x,y) as the
coordinate of a point to fixed axis so that the line of thrust coincides with
the z-axis. In view of the fact that (dz,dy) = (cos 8, sin §) ds, the solutions
are given by

x:2\/X[E(\/Xs,k)—l}—s, yz2kﬁ[1—cn(ﬁs,k)],
(11.3.8ab)
where E(z, k) is the Legendre elliptic integral of the second kind, cn(z, k)
is the Jacobi elliptic function; and s is connected by the functional relation
(11.3.7).

The inflexions are determined by cos# = cos o or en?(v/A s, k) = 0. This
means that the arc between two consecutive inflexions is (2K/v/A) where
4K is the real period of ¢n(z) and sn(z). These inflexions are equally spaced
along the z-axis at intervals

2
\/—X[2E(K) - K], (11.3.9)
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Fig. 11.1 A single loop.

where F(K) = E(K, k) is the complete elliptic integral of the second kind.

The points at which the tangents are parallel to the line of thrust are
determined by sinf = 0 and sn(v/As)dn(v/As) = 0. This implies that s is
an even multiple of K. It turns out that the inflexion elastica consists of
a series of bays which are separated by points of inflexion and divided into
equal half-bays by the points at which the tangents are parallel to the line
of thrust. Finally, it follows that the curve changes its form as « increases
and all eight different forms are shown in Love’s book (1944). When o > Z,
x is negative for all small values of sv/\, and when o = 7, the curve forms
a single loop as shown in Figure 11.1. In this limiting case (o = 7), the rod
of infinite length forms a single loop. The pendulum begins to close to the
position of unstable equilibrium and just makes one complete revolution.

(b) Non-Inflexional Elastica

In this case, equation (11.3.3) can be written in the form

o> 2(1 — k?)
<%) =2) [cos@+1+T , k<1. (11.3.10)
This can be solved exactly in terms of the argument of the Jacobi elliptic
function sn(u, k) = sin 4, where u = % s. Measuring s at a point when
0 = 0, we obtain
g 2 0
i E\/X dnu, snuzsina (11.3.11)

Thus, the coordinates x and y are given by

z=kvVA [(1 - %) u+ % E(u,k)] . y= —%dn(u, k). (11.3.12ab)

It follows from a careful analysis that the curve forms a series of loops
lying altogether one side of the z-axis as shown in Figure 11.2.

We next include the theory of buckling of long thin strut under thrust
developed by Euler, and discussed by Love (1944) in his great book. We



Euler’s Contributions to Mechanics and Elasticity 325

Fig. 11.2 A series of loops.

follow Love’s discussion by adding the limiting form of the elastica as « — 0
and 6 — 0. In the limit as 8 — 0, we replace sin 6 by 6 so that the solutions
of the linearized equation (11.3.1) become

0 = acos(VAs), T =s, y = aV\ sin(zV)). (11.3.13)

Thus, the elastic curve is approximately a sine-curve of small amplitude a.
The distances between two consecutive inflexions is (7/v/A). Thus, a long
straight elastic rod can be bent by applying forces at its end in a direction
parallel to that of the rod when undeflected provided the length ¢ and force
F satisfy the inequality

A2 >7% or  (PF>n’B. (11.3.14)

If the direction of the rod at the end is the same as that of the applied
forces, the length is half that between consecutive inflexions and inequality
(11.3.14) becomes 4\¢? > 72 or 42F > 72B. On the other hand, if the
ends of the rod are subjected to remain in the same line, the length is twice
that between consecutive inflexions, and then inequality (11.3.14) becomes
M2 /472 or (2F > 472 B. Tt follows from this analysis that if the length is

1 m

slightly larger than (5 ﬁ)’ or the applied force F is slightly greater than

(3 m2B/¢?), the rod is deflected under this load, so that the central line
assumes the form of one half-bay of a sine curve of small amplitude. If the
length of the rod is less than the critical value, it simply contract under the
load. On the other hand, if the length is greater than the critical length,
the equilibrium of the rod is unstable.

(ii) The Euler Bifurcation Problem of Elastica

We next present a bifurcation analysis of the Euler problem in some
detail. We assume that the axis of the elastic column of length ¢ coincides
with the z-axis. It is also assumed that the column remains straight before
the application of the compressive thrust at its end. We denote the angle
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between the tangent to the column’s axis and the z-axis by #(x). The
horizontal and vertical displacements of the buckled axis are denoted by
u(x) and w(z) respectively. We use the length scale ¢ to normalize the
problem so that 0 < x < 1.
The nonlinear boundary value problem is then governed by
0" + Asinf = 0, 0<z<1, (11.3.15)
0'(0) =0'(1) =0, (11.3.16)
u =cosf—1, u(0)=0, 0<2 <1, (11.3.17)
w' =sinfh, w(0)=w(1)=0, 0<z<1, (11.3.18)
where the prime denotes the differentiation with respect to x, and A is a
non-negative parameter proportional to the applied thrust.

The linearized problem (11.3.15)-(11.3.18) admits eigenfunction solu-
tions

0, = A, sinnrz, n=20,1,2,3,---, (11.3.19)
corresponding to the eigenvalues
A\n = n’n2, n=0,1,2,3,---. (11.3.20)

On the other hand, it can be proved that the nonlinear problem
(11.3.15)—(11.3.18) also admits non-trivial solutions. In fact, it is possi-
ble to determine an explicit expression for the curves which bifurcate from
eigenvalues 0 < A\ < Ay < ---. In order to find these curves, we write
(11.3.15) in the form

(%) i = 2A(cosf —cosa), 6(0) = 0. (11.3.21)
We introduce a change of variable ¢ defined by

sing —ksing,  k=sin % (11.3.22)

and transforms (11.3.15)—(11.3.18) into the form
¢ =p(1—ksin? )"/ (11.3.23)
¢(0) = <2m—|— %) T, m=0,+1,+£2,--- (11.3.24)
o(1) = <n+%) T n=41,42 . (11.3.25)

This differential system admits the solution

ur = /¢($) d.9 YL (11.3.26)

$(0) (1 —k?sin*0)
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which gives the value of p at x =1

#(1) do
= / . (11.3.27)
o0 (1- k2sin2)"/?

Integral (11.3.26) or (11.3.27) is somewhat similar to that of the com-
plete elliptic integral of the first kind defined by Dutta and Debnath (1965)
in the form

w/2
K (k) :/ @ 1z = CF (la lal;k2> ; (11.3.28)
0 (1-k2sin?6) 2 \22

where F'(a,b,c,z) is the hypergeometric function. The function K (k) sat-
isfies the properties: (i) K(0) = Z, (i) 2 > or < 0 according as k > 0, or
< 0, (iii) K (k) — oo as k — +1 and (iv) for k < 1 (11.3.28) implies that

71'/2 1 2
K(k) = /0 (1 + 51# sin? 9) do = g (1 + %) . (11.3.29)

In view of the fact that the limits of integration in (11.3.27) is a multiple
of 7, it follows from (11.3.27) that p can be expressed as

= pn(k) = 2nK k), Hn(0) = nm = Ay, n=123---.
(11.3.30)
Furthermore, for £ < 1,

fin (k) ~ n7 <1 + %) . (11.3.31)

Thus, in the neighborhood of k = 0, u, (k) is approximately a parabola.

The above properties of K (k) enables us to draw the Figure 11.3. Thus,
when A = 0, the only solutions are § = 6y = constant which correspond to
the equilibrium position of the rod. In the case A # 0, the complete solution
of the problem is described above. Indeed, the buckled state branching from
Apn exists for all A > A, which can be seen from Figure 11.3. Thus, the
solutions of the Euler elastica problem confirm one of the main features of
bifurcation, namely, the sharp transition in solution multiplicity occurs at
the bifurcation points. As shown in Figure 11.3, the bifurcation branches
exist near the bifurcation points A, only to the right of the bifurcation
points. This corresponds to the supercritical bifurcation.

It is clear from the above discussion that Euler’s major work on elas-
ticity has provided a continuing strong influence on many modern areas of
research such as the theory cantilever beam and the theory of flexure of
beams of finite section due to Charles A. Coulomb (1736-1805) in 1773.
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+1
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Fig. 11.3 Supercritical bifurcation curves.

FEuler’s research on elasticity has also provided great impact on later work
on the elastica by Gustav Kirchhoff (1824-1887) in 1859, Max Born (1882-
1970) in 1906 and Bryant and Griffiths (1986), and applications to the size
and shapes of biological organisms due to Greenhill (1881), and the elastic
properties of the DNA molecule due to Benham (1977 and 1979).

11.4 Impact of Euler’s Work on Modern Aerodynamics

In the study of aircraft dynamics, it is natural to use a coordinate system
fixed to the Earth to describe the position and orientation of an aircraft
relative to the Earth. The position relative to the Earth is usually de-
scribed in terms of latitude, longitude, and elevation above the mean sea
level. Since the coordinate system is not a Cartesian system, it usually in-
troduces some problems in the formulation of aircraft dynamics. However,
it is convenient to describe aircraft position and orientation in terms of an
Earth-fized coordinate system (xf,yys, 25), that can be considered an inertial
coordinate system. In this Earth-fixed coordinate system, the components
of the inertia tensor in the equations of motion become time dependent
which introduces mathematical problems. This problem can be simplified
by formulating the angular momentum equations in terms of a coordinate
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system that is fixed to the aircraft with the origin located at the aircraft’s
center of gravity. This is called the non-inertial or the body-fixed coordi-
nate system, (Tp,yp, zp). On the other hand, the aerodynamic forces and
moments acting on an aircraft depend not on the velocity of the aircraft
relative to the ground, but rather, on the velocity relative to the surround-
ing air. Hence, the surrounding air can produce wing motion relative to
the Earth. In other words, the atmosphere in the immediate vicinity of
the aircraft moves at a uniform velocity relative to the Earth. Thus, under
this approximation, the atmosphere-fized coordinate system, (Zq,Ya, za) can
also be regarded as an inertial coordinate system. These three different co-
ordinate systems are usually used in formulating the aircraft equations of
motion. In summary, the position and orientation of the aircraft are best
described in terms of the Earth-fixed coordinate systems, the components
of the inertia tensor are most easily described in terms of a body-fixed
coordinate system, and forces and moments are described in terms of the
atmosphere-fixed coordinate system. However, the atmosphere-fixed coor-
dinate system has relatively less impact on the equations of motion, and the
final equations of motion are completely expressed in terms of the Earth-
fixed and body-fixed coordinates.

The orientation of an aircraft relative to the Earth can be described
in terms of what are known as the Fuler angles. Thus, it is necessary to
derive the transformation between the two coordinate systems (xf,yy, zy)
and (xp, yp, zp) in terms of the three Euler-angle rotations. We first treat
each of the three rotations as a separate transformation and then combine
the three transformation equations into one transformation equation. We
denote a velocity vector v with components (vy;,v,;,v.,) in the inertial
coordinate system (z,yy, z5) and the components (v, , vy, , vz, ) in the non-
inertial (zp,yp, 25) coordinate system. Making reference to standard texts
such as Phillips (2004), we write a single transformation equation in the
matrix form

(O Vg,
vy, | =AL vy, |, (11.4.1)
Uz, Vs,

where A is a 3 x 3 matrix of the form
CQC¢ S¢SQC¢ - C¢S¢ C¢SQC¢ + S¢S¢
A= CQS¢ S¢SQS¢ + C¢C¢ C¢SQS¢ — S¢C¢ , (11.4.2)
—Sy SsCo CyCy
S¢ =sing, Cp = cosp, Sy =sinb, Cy = cosl, Sy = sin®), Cy = cosv and



330 The Legacy of Leonhard Euler — A Tricentennial Tribute

¢, 6, 1 are the three Euler angles representing the bank angle, the elevation
angle and the azimuth angle respectively.
The inverse transformation equation is then given by

vwb Ua:f

_ AT
vy, | =A Uy, | (11.4.3)
Uz, Vg

where A7 is the transpose of the matrix A.

In the body-fixed coordinates, the velocity of the aircraft relative to the
surrounding air is (u, v, w) and in the Earth-fixed coordinates, the velocity
of the aircraft relative to the Earth is (Z¢, ¢y, 2y) which is the time rate of
change of the position vector (z,ys,zf). The velocity of the aircraft is the
sum of the ground speed and the wind velocity so that

i =4l v [ +] w |, (11.4.4)
in w W,

where (wg, wy,w;) is the wind velocity (or the velocity of the atmosphere
relative to the Earth).

Using these same Euler angle definitions, we obtain the relation between
the time rate of change of the Euler angle and the body-fixed angular
velocity vector (p,q,r) in the form

¢ 1 S4S9/Co  CySe/Co] [
0 =10 S4Ch —Sy q |- (11.4.5)
P 0 Se/Ch Cy/Cy r

In terms of this particular set of Euler angles, equations (11.4.4) and
(11.4.5) represent the siz kinematic transformation equations which are
used to update the position and orientation of the aircraft with time. It
is noted that the transformation equations (11.4.5) contains a singularity
which can be seen in the first and third equations of (11.4.5). Evidently,
these four terms become singular when cos = 0, that is, § = +3. At
these points the transformation breaks down, and integration of the Euler
angles becomes indeterminate. This singularity in the integration of the
Euler angles is usually known as the gimbal lock which physically occurs
when the nose of the aircraft is pointed straight up or straight down. This
singularity is really problematic in aircraft flight simulation. Despite the
singularity, the Euler angle formulation is widely used because the three
Euler angles have simple physical interpretations. In summary, the six
degrees of freedom rigid body equations of motion for an aircraft in flight are
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formulated in terms of Euler angles. It is convenient to solve the linearized
version of the Euler angle formulation and then use the solution to discuss
several aspects of aircraft dynamics. However, there are many cases where
the linearized equations of motion are no longer valid. For those cases, it
is necessary to study the coupled nonlinear formulation, but it is almost
impossible to handle such nonlinear problems without further assumptions
and approximations. Due to the existence of the singularity, equations
(11.4.4)—(11.4.5) are not normally employed to determine the Euler angles.
Instead, other methods including the direction cosine transformation or the
quaternion transformation are normally employed. These methods contain
no singularity and are frequently used by aircraft engineers.

We next briefly describe the direction cosine formulation by introduc-
ing the direction cosine matrix that can be obtained from any symmetric or
asymmetric Euler angle sets. In order to avoid the singularities involved in
the Euler angle formulation, we use the matrix A in (11.4.2) as a direction
cosine matrix and treat the nine elements of this matrix as a fundamental
description of orientation. The elements of this matrix are called the di-
rection cosines. If these nine direction cosines are known, the components
of any arbitrary vector in the body fixed coordinate system can simply be
related to the nine components of the same vector in the inertial coordinate
system through the definition of the direction cosine matrix [C;;] by

Uy, Cii Ci2 Cis Vg g
Uy, = 021 CQQ 023 ny . (1146)
Uz, Cs1 O3 Cs Uz

Since the inverse of the matrix [Cj;] is equal to the transpose matrix
[C}i], the velocity of the aircraft can be expressed as the sum of the ground
speed and the wind velocity so that

Ty Cin Ca  Cx u Wy
Ty = | Cia Cyo Cs39 v + Wy . (11.4.7)
Ty Ciz  Caz Css w w,

In order to write the kinematic equations associated with the direction
cosine formulation, we obtain a set of differential equations relating the
time derivatives of the nine elements of the direction cosine matrix [Cj;] to
the body fixed angular velocity vector in the matrix form

Cn Clz C:'13 0 r —q Cii Cip Ci3
Cor Oy Cp| = |-r 0 D Co1 Co (O3
C31 O3 Csg q -p 0 C31 Cs  Cs3

(11.4.8)
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These nine differential equations are called the Poisson kinematic equations.

The orientation of an aircraft has only three degrees of freedom. But
there are nine elements, C;; in the direction - cosine matrix. So, these
nine elements cannot be independent. There must be six degrees of redun-
dancy in the direction cosine formulation. To eliminate these six degrees
of freedom, some constraints are required. We use the fact that rigid body
rotation is an orthogonal transformation so that the direction cosine matrix
[Ci;] must be orthogonal. This means that the inverse of [Cj;] is equal to
its transpose which leads to the six constraints as

Cl +C3 + G5y = Cfy + Oy + CF = O3 + C33 + O = 1, (11.4.9)
C11C12 4+ C21C22 + C31C30 = 0, C11C13 + C91Ca3 + C31C33 = 0,
C12C13 + C2C53 + C32C33 = 0. (11.4.10)

These six constraints are called the redundancy relations in the direction co-
sine formulation. It is noted that the relation in equation (11.4.8) preserves
the orthogonality of the direction cosine matrix. There are two major fea-
tures of this direction cosine formulation. First, it contains no singularity
and is frequently used by aircraft engineers. Second, the direction-cosine
formulation is not efficient from a computational point of view as numerical
integration is excessively time-consuming.

On the other hand, in 1775, Euler provided an interesting description of
the orientation of the noninertial coordinate frame relative to the inertial
coordinate frame that can be described in terms of a single rotation through
an angle ©, about a particular axis, E, which is usually known as the
Euler azis (or the eigenazis). The aircraft engineers frequently use the
FEuler axis rotation and the three Euler angles to develop the FEuler axis
formulation which consists of four-component description of orientation.
The total rotation angle © and the three components of a vector E directed
along the Euler axis E;, E, and E,. Clearly, four parameters describe
the orientation of an aircraft having only three degrees of freedom, and
so, the Euler axis formulation is redundant as there are four degrees of
freedom. In order to eliminate the redundancy, the length of the Euler
axis vector is assumed to be unity so that E? + E§ + E? = 1. Finally,
the components of an arbitrary vector, v in the body-fixed coordinates
(b, Yb, 2) are related to the components of the same vector in the Earth-
fixed coordinates (x¢,yy, zf) through the famous Fuler’s formula given by

U, Vg
vy, | =B | vy (11.4.11)
Vs, Uy
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where B is a 3 x 3 matrix given by
Eio + C@ Ewy + EzS@ E;. - EUSO
B=|FE, —E.,S E,,+Co E, .+ E.Se |, (11.4.12)
sz + EUSG Eyz - Ea:SG Ezz + C@
where E;; = E;F;(1 — Co), Co = cos© and Se =sin©.
The inverse of the transformation matrix B in (11.4.11) is obtained by
simply rotating through the negative of the total rotation angle © so that

(I Vg,
vy, | =C| vy |, (11.4.13)
'sz vzb

where C' is the matrix obtained from B by changing the sign of each Sg.

Thus, the velocity vector (&5, 9y, 2¢) of the aircraft relative to the Earth
can be expressed as the sum of the wind velocity (w,, w,, w;) relative to the
Earth and the velocity of the aircraft (u,v,w) relative to the surrounding
air in the form

L'Cf U
g | =C| v |, (11.4.14)
Zf w

where C' is the matrix stated in (11.4.13).
Finally, the relation between the rate of change of the Fuler axis rotation
parameters and the body-fixed angular velocity vector (p, g, r) is given by

e 2E, 2E, 2F,
Be | _1|Eu+C/S B -E.  E.+B | |°
BE, | 2|E,+E E,+tC/s E.-E||%]
. r
E, E/ . —-E, E,, +E.; E' +C/S
(11.4.15)

where Ej; = —E;E;C/S, S = sin ($) and C = cos (£). Thus, equations
(11.4.14) and (11.4.15) represent the kinematic transformation equations
in terms of the Euler axis rotation parameters. It is worthy to note that
equation (11.4.15) has a singularity when sin © = 0, that is, at © = 0 or 7.
So, the integrations of these equations is indeterminate. Thus, this analysis
reveals that the existence of the singularity in the Euler axis formulation
is a problem in aircraft flight simulation because it arises when fuselage
axis is level with the ground and the aircraft is headed either due north or
due south. Thus, the aircraft orientation is much more likely to occur in
normal flight operation than the vertical orientations which give rise to the
gimbal lock singularity involved in the Euler angle formulation. This is the
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reason why the Euler axis formulation is never applied to flight simulation.
However, this formulation can be transformed into another singularity-free
formulation by a change of variables.

We next make a change of variables to transform the Euler axis formula-
tion to the Fuler—Rodrigues quaternion formulation. The four parameters
in the Euler axis formulation are utilized to introduce four new different
parameters by

©) O ©) €]
(€0, €z, €y, €5) = <COS 2 E, sin 2 E, sin E’EZ sin 5) . (11.4.16)

These four parameters are usually known as the Fuler—Rodrigues sym-
metric parameters, and they form the basis of a very widely used descrip-
tion of orientation and rigid body rotation. Whether or not Euler knew
of the Euler-Rodrigues symmetric parameters is a topic of historical de-
bate. However, in 1770, Euler introduced four symmetric parameters for
orthogonal transformations without the use of half angles. Roberson (1968)
mentioned that Euler introduced a rotation matrix in terms of the so-called
Euler-Rodrigues parameters.

Since the four parameters defined by (11.4.16) uniquely determine an
orientation having only three degrees of freedom, these parameters must
be related in some manner. This relation can be obtained by squaring the
four parameters and adding them together so that

eg +e2 + el +e2 = cos® (%) + (EZ + E} + EZ) sin’ %. (11.4.17)

In view of the fact that the Euler axis vector E = (E,, E,, E.) is a unit
vector, it turns out from (11.4.17) that

e+ ert+el+el=1. (11.4.18)

The Euler’s formula (11.4.11) with (11.4.12) can be expressed in terms
of half of the rotation angle by using the trigonometric identities, sin © =
2sin £ cos £, cos© = cos? £ —sin® € and 1 —cos© = 2sin® €. Introducing
the notation S = sin(0/2), C = cos(0/2) and E;; = 2F;F;S% in (11.4.11)
and (11.4.12), it follows that

Va, By +C2— 82  E, +2E.SC  E,.—2E,SC7 [uv.,
gy | = | Boy —2E.SC  Ey+C2—S> E,. +2E,SC | |v,
Vs, E,.+2E,SC B, —2E,SC E..+C2-52] |u,,
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We next use the fact that E;; = 2ee;, and S? = (E2 + E} + E?) §% =
€2 +e2 + 2, and then put (11.4.16) into (11.4.19) to obtain the transfor-
mation equation

Vg, Uz
vy, | =D | vy, |, (11.4.20)
Vs, Uz,

where D is a 3 x 3 matrix given by

€2 +ed — 65 —e? 2(eqey + €2€0) 2(ezes — eyeq)

D= 2(esey —ezeq) efj +e3 —e2 —¢? 2(eye. + ezeq)
2(ezes + eyeq) 2(eye. — eze€p) e2 +et —e2 — 65
(11.4.21)

It follows from (11.4.20) with (11.4.21) that the velocity of the aircraft
is related to the ground speed and wind velocity by

gr | =D v [ +] w, (11.4.22)
Zf w W,

Differentiating (11.4.16) with respect to time ¢ gives the time rate change
of the Euler axis rotation parameters in terms of the time rate of change of
the Euler-Rodrigues symmetric parameters

éo -S . 0
é. | | E.C | © E,S
o | =| e |z + 5 (11.4.23)
és E.C E.S

We next use (11.4.15) to express the time rate of change of the Euler
axis rotation parameters in terms of the noninertial angular velocity vector
so that (11.4.23) can be written as

) -E.S -E,S —FE.S »
ey C —FE.S E,S
’ = 11.4.24
é, E.S c  -EsS||! ( )
é, -E,S E.S C
which is, by (11.4.16),
) —ey —e —e,
Ey 1 €g —eZ e P
A = — Y q (11.4.25)
€y 2 €, €o —e, ,

€, —ey €y €g
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Since equation (11.4.25) is linear in both the noninertial angular velocity
vector and the Euler-Rodrigues symmetric parameters, it can be expressed
in the form

€0 0 —p —q —r €o
€y 1{p 0 r —q ey
. _ = (11.4.26)
€y q - 0 p ey
éz T q -p 0 €z

All these results reveal that equation (11.4.22), and equation (11.4.25)
or equation (11.4.26) represent the kinematic transformation equations in
terms of the Euler—-Rodrigues symmetric parameters. It is worth noting
that the Euler-Rodrigues formulation contains no singularities. The physi-
cal interpretation of the quaternion formulation is much less intuitive than
that associated with the Fuler angle. Moreover, there are several compu-
tational advantages over the Euler angle treatment or the direction cosine
formulation. The computational advantage of the quaternion formulation
can be increased even further through the use of Hamilton’s quaternion
algebra.

From a computational point of view, the Euler—Rodrigues quaternion
formulation is far superior to either the Euler angle formulation or the
direction cosine formulation. Numerical integration of the nine-component
direction cosine formulation requires more than double the computation
time needed for the four-component quaternion formulation. On the other
hand, the Euler angle transformation requires about eleven times as long
to evaluate as the quaternion transformation.



Chapter 12

Euler’s Work on the Probability
Theory

“Kuler devoted a portion of his universal interest to the study
of the theory of risk and ... to questions involving the calculus
of probability.”

Louis Gustava du Pasquier

“His industry and genius have left a permanent impression in
every field of mathematics; and although his contributions to
the Theory of Probability relate to subjects of comparatively
small importance, yet they will be found not unworthy of his
own great power and fame.”

Isaac Todhunter

12.1 Introduction

During the sixteenth and seventeenth centuries, a great deal of attention
was given to games of chances and gambling in general. An Italian noble-
man suggested a problem of dice to Galileo, the solution of which is the
first recorded result in the history of mathematical probability. A decade
after Galileo’s death, Pierre de Fermat and Blaise Pascal began their cor-
respondence dealing with problems of throwing of a dice, arrangements of
objects and chance of winning a game. They were both interested in the
mathematical analysis of these problems including problems of gambling.
Among other things, Pascal discovered the familiar formula for the bino-

mial coefficient nC). or < . ) and applied these results to solve the problem
of points in the case where one player requires m points and the other n

points to win a game. Interestingly, it was Christian Huygens who pub-
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lished the first treatise on the chances of winning games and problems of
dice in 1657. This remained the best account of probability theory until the
publication of Johann Bernoulli’s first significant book ‘Ars Congectandi’
(Art of Prediction) on probability. In this treatise, Bernoulli presented the
problems and solutions by Huygens and gave his own solution of them.
He also introduced what are now known as Bernoulli’s trials, and the law
of large numbers. In 1711, De Moivre published another ground breaking
book on probability, The Doctrine of Chances. In order to carry out the
computations involved in the law of large numbers, it was De Moivre who
approximated the binomial distribution with what is now known as the
normal (or Gaussian) distribution. Some theoretical analysis of the ap-
plications of probability to hypothesis testing is due to British clergyman,
Thomas Bayes (1702-1761) who stated the theorem that if an event has
happened p times and failed ¢ times, the probability that the chance of
success will lie between the values a and b (all values are equally likely) is

b
m/a 2P (1 — x)dz, (12.1.1)
where B(p, q) is the Euler beta function. Bayes evaluated the above integral
and the integral for the beta function in (0, 1) by approximation.

In an effort to discover new mathematical methods to solve major prob-
lems in probability theory, there emerged a great deal of work on permuta-
tions and combinations, summation of infinite series, finite differences and
many new formulas for special functions. At the same time, a new major
subject, the so called the theory of errors, arose associated with a set of
observations (or measurements) of a trial of experiments due to the influ-
ence of astronomers, mathematical physicists and experimentalists. It was
Laplace who fully recognized the major importance of probabilistic meth-
ods for investigating the results of measurements or observations. In his
Théorie analytique des probabilités (Analytic Theory of Probability) pub-
lished in 1812, Laplace gave the first systematic presentations of probability
theory. He also proved that distribution of the average random observa-
tional errors which are uniformly distributed in an interval symmetric about
the origin tends to the normal distributions as the number of observations
increases to infinity. This celebrated result is now known as the central limit
theorem. Based on the problems of games and the problem of experimental
errors, Laplace established connection between these and the correspond-
ing questions in mortality and life tables which provided the fundamental
basis of insurance statistics. He also formulated the error function, erf(x),
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defined by the integral

erf(z) = %/0 e dt, (12.1.2)

where the integral in (12.1.2) is called the probability integral, and erf(0) = 0
and erf(oco) = 1.

The complementary error function, erfc(z) is also of special interest and
defined by

erfe(z) =1 —erf(x) = %/ e dt, (12.1.3)
™ x

so that erfc(0) = 1 and erfc(oo) = 0.

Because of its importance in probability theory, the error function has
been studied in detail and tabulated. So, it is of special interest in finding
the asymptotic value of erf(x) for small or large . When z is small, we
can calculate the approximate value of erf(z) as follows:

We have
T e e , tr t°
e tdt = 1—t2 4+ — — =+ | dt, (12.1.4)

x? x° z’

Since this series is an alternating one, the sum of two successive terms
gives an upper and lower limit to its sum. So, neglecting terms beyond 7,
the result would be deficient by an amount less than 9%_491!' If this is less
than one in the fourth decimal places, then %Z! <107%orz < 2x 1072
approximately.

For large value of z, integrating by parts, we obtain

—t2 —t2 —fE2 —2 —t2

1 2 1 2 1.3 [

=—e¢ ¥ ———e " 4+ — t4e " gt 12.1.7
2z ¢ 2s¢ Tagf e (12.L.7)
Continuing this process leads to the result
2
e e ” 1 1.3 1.3.5
dt = 14— ==+ |- 12.1.
/w ¢ % [ 222 T @222 (a2 T (12.1.8)

Since exp(—x?) is a decreasing function in (z,00), the error involved in
stopping at the fourth term is less than exp(—2z?) fwoo 1'232?57dt, that is, less
than exp(—x?) ;;%?, the last term is retained. A similar result is given at

any stage of the asymptotic expansion.
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Based on a set of very general assumptions, Laplace established the
Method of Least Squares. In fact, if the mean value of a set of observations
is the most probable value, and positive errors are as likely as negative ones,
the error function for the observations is of the Gaussian form

%e*hw, (12.1.9)
where h is known as the measure of precision or called the precision con-
stant. The value of h to be chosen is that which makes the probability
maximum. If x{, x9, ---, x, are the measured observations of a number
x, then the deviations of the observations from x are respectively z — 1,
T —Ta, -+, T — Ty. Assuming that the probability p(z — z), k =1, 2, 3,
-+, n is Gaussian, that is,

plx —ap) = % exp [—h*(z — 2)?] . (12.1.10)

Thus, the probability of all deviations is the product

Hp(x—xk) = %exp l—hQZ(x—xk)Q] . (12.1.11)
k=1

k=1

The problem is to find x so that probability is maximum which is equiv-
alent to determining x so that Y, _, (z—x)? is a minimum. This gives the
mean value T of 1, x3, - - -, ,. This method of finding the best value of an
observation by assuming that the sum of the squares of the deviations from
it will be a minimum is called the Method of Least Squares. Putting the
mean value Z = < 3" 7° z,, in the right hand side of (12.1.11), and making
the above probability maximum, it turns out that A is determined by the
equation

d% [h" exp {—h2k§_:1(x - xk)QH =0, (12.1.12)

so that % =2h "), (zx — )?. Therefore,
_ n 1
C2Y (-2 2072
where ¢’ is the standard deviation for the given set of observations defined
by no'? = 3"1'_ (x, — %)% It follows that the choice of & is such as to make
the standard deviation for the observed set x1, xa, -+, x, coincide with
that of the given population.

Thus, the works of Fermat, Pascal, Huygens, Laplace and Bernoulli
marked the beginning of the theory of probability in the seventeenth and
eighteenth centuries.

h2

(12.1.13)
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12.2 Euler’s Work on Probability

Euler’s modest amount of work on probability in finite samples spaces origi-
nated from the Genoese Lottery and the fundamental principle of counting.
The word of lottery meaning the drawing of prizes 'by lots’ was an ancient
idea. The large scale lottery system initially originated in a small state of
Genoa in Italy in 1643. This state became a part of the newly indepen-
dent Kingdom of Italy after downfall of Napoleon Bonaparte (1769-1821)
in 1815. However, the earlier roots of lottery system in Italy came from
the City of Venice in 1520, and then from the city of Florence in 1530
where the first lottery system was introduced in the popular form of gam-
bling in which lottery tickets were sold and cash prizes were awarded to
winners. Subsequently, this became very popular in many Italian cities
and then throughout Europe by the 1700s as a source of raising money for
government. It was Benedetto Gentile of Genoa who was fully responsible
for providing the major leadership role of the Genoese Lottery System for
raising funds for the state. Even today, the Italian government uses a state
lottery called “lotto” which involves drawing of five balls from a ruota (or
wheel) containing balls numbered 1, 2, 3, ---, 90. In addition to Euro-
pean countries, the lottery system became popular in the United States of
America by the early 1800s.

In 1749, an Italian business man named Roccolini approached Frederick
the Great, then King of Prussia with a proposal to establish a lottery
system involving the drawing of five numbers from 1 to 90. The King
sent the proposal to his scientific advisor, Euler for a mathematical review
concerning the implementation of a state lottery in Germany. At the royal
request, Euler became very interested in analyzing the various aspects of
the Genoese Lottery system and came up with an improved lottery system
after addressing combinatorial issues in the analysis of this game of chance.
Subsequently, the Berlin lottery was established in Germany in 1763.

In addition to his study and research on the royal assignment concerning
mathematical problems of lotteries, Euler prepared seven notebooks during
his early years in Basel, his first St. Petersburg period and his Berlin pe-
riod. These notebooks contained solutions of many mathematical problems
concerning probability theory and statistics, combinatorics, mortality, the
mathematical theory of games, commercial as well as life insurance. He also
investigated problems of pension, security, investment and interest. Under
his direct supervision, his research assistant, N. I. Fuss published a text-
book in 1776 covering basic elements of probability and statistics, insurance
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and organization of lotteries with tables. All of his work clearly provided a
clear evidence of his life long interest in social sciences, probability theory
and mathematical statistics.

Almost simultaneously, Euler wrote four mathematical papers on the
probability of calculus based on solutions of various difficult questions in
the Genoese Lottery. In addition, he made a presentation on Reflections on
a singular type of lottery called the Genoese Lottery in 1763, and then pub-
lished in 1862 in Euler’s Opera Posthuma I. In this work, Euler introduced
the hypergeometric distribution of the probability py ,, with parameters ¢,

n and k as
() (o)
m k—m
Pem = <€> 5
k

where a player bets on k numbers to match m of them , ¢ and n are the
parameters representing n tokens at random from a set numbered 1, 2, 3,
-+« £. Euler also gave a complete derivation of the desired probabilities for
four problems with k=1, 2, 3,4 and m =0, 1, 2, 3, and 4.

In his article “On the probability of sequences in the Genoese Lottery”
that was presented to the Berlin Academy of Sciences in 1765, Euler in-
vestigated the sequences (or runs) of consecutive numbers that will appear
among number drawn in a Genoese type lottery. Denoting a sequence of
m consecutive numbers by (m), and introducing the idea of a species, he
considered the solution of a general problem. Given an arbitrary parameter
n, we denote the species s of a draw by

o ([1) + o ([2) + -+ Oér(er), (1222)

(12.2.1)

so that
> ait; =n. (12.2.3)
=1

In addition, we denote k = >_'_, ;. Then the number of drawings that
result in a species s is given by
l—n+1)l—n)l—n—-1)---l—n—k+2)
(rlag! -+ al)

Thus, all desired probabilities can then obtained by dividing (12.2.4) by

. (12.2.4)

the total number of drawings <§) .
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In order to make a fair lottery system, Euler introduced m positive
numbers so that >."" | &, = 1 and distributed the lottery prize by the
rule
Ak m
Phom

fem = (12.2.5)

Then the expected payoff for a lottery ticket costing one unit is

k n
Z Pr,m fk,m = Z A, - (1226)
m=1 k=1

However, the weights, o, are not uniquely determined except k = 1.
Therefore, for k > 1, Euler considered three possible weight distributions:
1. Uniform distribution,

1
Chm = 75 (12.2.7)
2. Binomial distribution,
1 k
= ———— , 12.2.
RV | <m> (12.2.8)
3. Modified Binomial distribution,
1 k
m=—(k— 1 , 12.2.
= gk =m 1) ( F) (12.29)

where

a k
My, = k—m+1 ( ) 12.2.10
> ) (12:2.10)

In distributing weights, Euler was interested in minimizing the impact
of large amount of prizes corresponding to large values of k.

In order to solve the problem for a given parameter n, we need a com-
plete list of the various species, or partitions associated with a natural
number n. The partition function p(n) was discovered and studied by Eu-
ler in great detail in response to a 1740 letter from Phillip Naude. Thus,
the probability question of enumerating and classifying the different species
in the problem of runs in a lottery drawing reduces to the problem of par-
titions of numbers.

Although combinatorics became a new modern branch of mathematics
fairly recently, problems of counting have a long and early history. Euler
considered problems of permulations and combinations and formulated the
problem as follows. Given any series of n letters a, b, ¢, d, e, ---, to find
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how many ways they can be rearranged so that none returns to the position
it initially occupied. In this context, Euler introduced the notation II(n)
to represent the number of permulations of the n letters a, b, ¢, d, e, - - -,
in which none occupies its original position. Such a permulation is now
known as a derangement. Using some simple and ingeneous argument,
he also proved several recursion formulas for II(n) including the double
recursive formula

II(n) =(n—1)[(n—1) +(n — 2)]. (12.2.11)
This reduces to the simple formula
II(n) =nll(n—1)+ (-1)" for n>2. (12.2.12)
He also derived a remarkable closed-form expression for II(n), n > 1, as
1 1 1 1 (=)™

Euler considered the question: if an ordered set of objects is randomly
permuted, what is the probability that none of the objects returns to the
original position? In other words, the major problem is to find the proba-
bility p,, of derangements II(n) so that none of the objects being returned
to its original position. Thus, the probability p,, is given by

II(n) 1 1 1 (=)™
e T R I A

It is important to find p,, for small and large values of n. In 1751, Euler

calculated the limit of p,, as n — oo as

(12.2.14)

. . 1 1 1 (—=1)"
e L e TR TR T I
1
=-w 0.36787944 . . ., (12.2.15)

where e is the universal exponential constant. In other words, the likelihood
of a derangement converges very rapidly to e~!. So, the involvement of the
constant e in the combinatorial problem is another remarkable fact.

In 1779, Euler presented a paper on “A curious question from the doc-
trine of combinations”. This paper had also some impact on the probability
of winning a game, that is, on the lottery problems, where the number of
combinations, nC, of n objects selected r at at time with the order of the
chosen objects is not taken into account. On the other hand, the number of
permutations, nP, of n objects taken r at a time with the order of chosen
objects is taken into account so that nP,. = r! nC,..
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12.3 Euler’s Beta and Gamma Density Distributions

In probability and statistics, the Euler beta function is used to define the
beta density distribution By, »(z) in 0 <z < 1:

['(m+n) -1 _n—1
Bpn(t) = ———= (1—2)" 2" ", 12.3.1
@) = sy (=) e (1233.1)
where m > 0 and n > 0 are parameters.
Obviously,
1
/ Bpyn(x)dr = 1. (12.3.2)
0

The expectation p and the variance o2 of the beta distribution are given
by

1
n
= B n(x)dr = : 12.3.
p= | @Bl = (12:3.3)
1 1
7 = [ @ Bn@d = [ Bt — 2
0 0
= e (12.3.4)

(m+n)2(m+n+1)
For m > 1 and n > 1, the graph of By, ,(z) is bell-shaped. If m < 1 and
n < 1, the graphs of B, »(z) is U-shaped, tending to infinity at the limits.
A simple modification of the beta density distribution is defined by

1 1 _D(m+n) am!
A apme (1 +x> = D)) @+ o)

In particular, when m = } and n = 1, the B

0 <z <o0.(12.3.5)

%7%(33) occurs frequently in

fluctuation theory

(x) = _ 0<z<l (12.3.6)

m/x(1—z)
This is so called the arc sine density distribution in 0 < z < 1.

In his 1968 study of string theory, G. Veneziano first recognized that
data for scattering of particles could be fit well with an amplitude which
is the sum of beta functions. This representation naturally occurred in a
depiction of particles as strings rather than points.

On the other hand, the Euler gamma function is used to represent the
probability density distribution function in 0 < x < co in the form

faw(@) = ﬁ o’z e, (12.3.7)
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where o > 0 is the trivial parameter and v > 0 is an essential parameter.
The particular case fo,1(x) = ae™* exponential density distribution with
! and the variance a=2, and fo () is given by

fan(z) = % (az)™ e, (12.3.8)

A simple calculation shows that the expectation and the variance of the
gamma distribution are (v/a) and (v/a?) respectively. The family of
gamma density distributions is closed under convolution operation

Jan(@) * fau(®) = fausv() p>0,v>0, (12.3.9)
where the convolution is defined in (0, c0) by
Sapu(®) * fou(z) = o e /w(x —y)*tyldy. (12.3.10)
T T ¢ Sy T e
After the change of variable y = xt, this expression differs from f, ;4. () by
a numerical constant only and this is equal to unity because both fq ;40 ()

ax

the expectation o™

and (12.3.10) are probability density distribution functions.

It follows from (12.3.7) that the graph of fi,(z) is clearly monotonic
if v < 1, and unbounded in the neighborhood of the origin when v < 1.
For v > 1, the graph of f; ,(z) is bell shaped with the maximum value
(v — 1) texp[—(v—1)] /T(v) attained at * = v — 1. Using the Stirling
approximation (8.2.58), the maximum value tends to /27 (v — 1) for large
(v —1). It follows from the central limit theorem that

\/7,]0041/ a: V/a) — \/_exp <—%x2) as v — oo. (12.3.11)
In other words, the gamma density distribution tends to the normal
density distribution as v — oo.
In general, if f(z) is a continuous probability density function, then the
random variable X has distribution f if for any interval [a, b] the probability
that X assumes a value in [a, ] is

b
P(X=za<z<b)= / f(z)dz. (12.3.12)

If Xy, X5, -+, X,, are n independent random variables with the same
mean u and the same variance o2 (or the same standard deviation o), then
their sum S, = (X; + X5 + --- + X,,) has the mean nu and variance no?.

The standardized random wvariable Z,, with mean zero and variance one is
defined by

_ Sp—=np 1 - B
Zn = o " odm ;(XT ). (12.3.13)
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The fundamental Central Limit Theorem in probability and statistics states
that, as n — oo, Z, tends to a standard normal distribution. In other
words, the distribution function F, (2) of Z,, satisfies

* 1 1,2
lim F,(z)= lim P(Z, <z)=F(z)= e 2% du. 12.3.14
Jim F(2) = lim P(Z,<2)=F() = [ —= (123.14)

Another version of the Central Limit Theorem is as follows. If F'(z) is
a distribution function with zero mean and unit variance, then

z 1 1,.2
lim F™(zv/n) = F(z) = e 2% dx, (12.3.15)
n— oo o 2

where F™* = F'x F - -- % F' is the convolution of F' with itself n times and
(F x G)(2) is the convolution of F and G defined by

oo

(FxG)(z) = / F(z —y)G(y)dy, (12.3.16)

—0o0
provided the integral exists.
Finally, we use the method of probability to derive the celebrated Wallis
product formula from the student ¢-distribution with v as the number of
degrees of freedom given by

2y —5(v+1)
z ) (12.3.17)

fu(@) = ay (1 +—

where student was the pen name of William Gosset (1876-1937) and

aV:r<”‘2L1) /Wr(%), (12.3.18)

v(> 0) and z are any real numbers. Evidently, the student distribution is
a continuous probability distribution in (—o0, 00). In other words,

oo 22\ "2+
a,/ (1 + —) dz = 1. (12.3.19)

14

This follows from the substitution of 2 = \/vtanf or dx = \/vsec? #df in
(12.3.19) so that

) 22 -3 (v+1) w/2
a,,/ <1 + —) dx =a,?2 \/5/ cos* "1 0db
v 0

(v TR )
=B (53) = rE) T

Using the fact that

=1. (12.3.20)

e = tim (1+ f)n (12.3.21)
n

n—oo
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it follow that

{E2 —v/2 2 —% 2
lim <1 n —) = (ez ) =e /2, (12.3.22)
12

V—00

Thus, it follows from (12.3.20) that

1
1 oo 2 _§(V+1)
lim — = lim <1 + x_) dx
v

v—00 Ay, v—oo [ o
%) 22 —3(v+1) %) )
= / lim <1 + —> dx = / e % 2dy = /2.
oo VT v o
(12.3.23)
More explicitly,
(v+1)
x 1 2
lim a, {1+ — = e /2 12.3.24

This means that the student t-distribution tends to a standard normal as
UV — Q.
Letting v = 2n and using I'(n + 1) = nT'(n) = n!, we obtain without
limit
r(ZH) @en-1)@2n-3)---531 7
“n = T (n) V2m(n — 1) 2n

_1.35.---(2n—3)(2n — 1) n
 246.---(2n—2).2n 2
1335 (@n-D@Ee+1l) 1 ]® [
|22 44 2n. 2n (2n+1) 2

L 2n—1 2n—|—1
-]

(4711 2) ’ (12.3.25)

We next take the square of both sides of (12.3.25) and then perform the
limit of its reciprocal expression as n — oo to obtain the Wallis product
formula

b 2n.2n n 1 T
—— = lim [ — — | == 12.3.26
H (2n —1)( 2n—|—1) n—oo <4n—|—2> <a2n> 2 ( )

n:l



Chapter 13

Euler’s Contributions to Ballistics

“Although to penetrate into the intimate mysteries of nature
and thence to learn the true causes of phenomena is not al-
lowed to us, nevertheless it can happen that a certain fictive
hypothesis may suffice for explaining many phenomena.”

Leonhard Euler

“It is today quite impossible to swallow a single line of
d’Alembert, while most writings of Euler can still be read with
delight.”

Carl Gustav Jacobi

13.1 Introduction

The ballistics revolution is usually attributed to two men, Leonhard Euler
and Benjamin Robins, a British military engineer, who based their works
on the early contributions of Galileo to the motion of a projectile in the
atmosphere without taking into effects of air resistance. In early days of
ballistics, the parabolic trajectory of a projectile was developed for the
study of the motion of cricket balls or cannon balls. Like Euler, Robins
was born in 1707. As early as 1727, Euler spent a considerable amount
of time to study mechanics. Indeed, he published his remarkable two-
volume treatise on Mechanics. The two final chapters of his first volume
contained a mathematical treatment of circular motion of a particle in a
vacuum and in a resisting medium. Euler derived the differential equations
of motion of a particle along the tangent and normal to the trajectory at
any point. Based on the motion of a particle under the action of a central
force formulated in Newton’s universal law of gravitation, Euler made an

349
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extensive investigation of the problem to the extent that it is appropriate
to recognize him as one of the founders of analytical celestial mechanics.
Almost simultaneously, Euler solved another fundamental problem which
dealt with the curvilinear motion of a particle in a resisting medium under
the action of gravity, that is, the major problem of exterior ballistics. In
fact, in 1753, he published his indepth study in a 40-page article entitled,
“Investigation of the actual curve described by a body projected into the air
or some other medium.” Euler reported that there exists some experimental
and theoretical evidence that the air resistance is proportional to the square
of the body’s velocity in the atmosphere. In order to develop a fairly general
mathematical theory of projectile, he recognized that three forces always act
on a projectile including the vertically downward acceleration of gravity, the
upward directed buoyancy force, and the resistance of the fluid against the
direction of motion. However, the buoyancy force is usually small in air, but
significantly large in a medium like water. This work clearly demonstrated
his early research and interest in ballistics.

On the other hand, in 1742, Robins published his original discoveries
in his book on New Principles of Gunnery containing the determination
of the force of gun-powder and an investigation of the difference in the
resisting power of the air to swift and slow motions that represented his
great achievement to develop the modern research in ballistics. In 1783,
John Pringle (1707-1782), the President of the Royal Society of London,
put it more simply by stating that Robins created a “new science”. John
Nef (1899-1988), an author of a book entitled War and Human Progress:
An Essay on the Rise of Industrial Civilization, wrote in 1950 that Robins’
work “provides a landmark in the interrelations between knowledge and
war”.
On the other hand, Thomas P. Hughes (1822-1896) said that Robins was
“a founder of modern gunnery”, and Charles Hutton (1737-1823), a British
engineering professor, acclaimed that Robins’ research represents “the first
work that can be considered as attempting to establish a practical system of
gunnery, and projectiles, on good experiments, on the force of gun powder,
on the resistance of air, and on the effects of different pieces of artillery”.

Among many pioneering contributions of Robins to ballistics, his single
most achievement was his discovery of the ballistics pendulum, the first
reliable and revolutionary scientific instrument was invented for measuring
speed of a musketball in particular and a projectile in general. He used this
instrument to discover enormously complicated air-resistance forces acting
on projectiles moving with a very high speed. It is interesting to point out
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that Robins gave a demonstration of these air-resistance measurements be-
fore the Royal Society of London that showed a significant modification of
the parabolic trajectory moving at a very high speed. He also demonstrated
that air resistance at subsonic and supersonic velocities follow different rules
and pointed out the importance of a sonic barrier and was well aware of the
changes in rules for calculating air resistance at velocities above or below it.
According to Huygens and Newton, the air resistance is proportional to the
square of the velocity of a projectile, Robins showed that this was correct
only at lower velocities. At velocities greater than the speed of sound (1087
feet per second) in air, he showed that the resistance is increased by a fac-
tor of three. Robins also discovered another aerodynamic property which
deals with the lateral deflection of moving projectiles as this phenomenon
is readily observed while playing tennis or baseball. He also observed the
spin imparted on the musket ball as it struck the barrel side of the mus-
ket during firing as the cause of its deflection. Based on his experimental
proof of his theory with a musket, Robins showed that the bullet reversed
its lateral direction of motion and moved to the right side of the musket.
He then elucidated experimentally this phenomenon by noting that the de-
flected musket forced the bullet to rotate from the left to the right due
either to spin or to the difference between the geometrical center of mass of
spherical bullet or its actual asymmetrical center of mass which is known as
the Robins Spin Effect or the Magnus Effect, since G. Magnus (1802-1870)
German physicist, also investigated it after a century later with full knowl-
edge of Robins’ experimental observations of the drift of the trajectory of
a musket ball. Another work of Robins’ dealt with the understanding of
the Robins effect to explain theoretically the better accuracy of rifles over
muskets. He made a presentation of his work entitled, “Of the Nature and
Advantage of Rifled Barrel Pieces” at the Royal Society in 1747. It was
Robins who first organized the tabulated numerical solutions of differential
equations of motion of a projectile in the atmosphere due to Euler. Robins
presented his ballistic table to the Royal Society in 1746 just a year after
Euler’s translation of Robins book on New Principles of Gunnery in 1745,
and prepared an approximate ballistics tables, but it is sufficiently accu-
rate for projectile motion as compared with experimental observations. All
ballistics tables suggest the war power available to artillery and military
officers after ballistics revolution. While investigating the behavior of bul-
lets from muskets and rifles, Robins formulated the fundamental principles
of aerodynamics. In summary, Robins fundamental research revolutionized
experimental and theoretical ballistics by transforming it into an aerody-
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namic and thermodynamic science. So, his work represents basic research
in science and engineering. It may not be out of place to mention that
Benjamin Robins was appointed as Engineer General of India and Captain
of the Madras artillery for the East India Company in December 8, 1749
and arrived in at Fort St. David on July 14, 1750. His duties and responsi-
bilities included improvements of proper training in its use of cannons and
mortars and proper allotment of ammunition. In addition to commanding
the artillery batteries, he redesigned Fort St. David as a part of the East
India Company’s military buildup against the French after the War of the
Austrian Succession in a short period of one year. Unfortunately, he died
of a fever on July 29, 1751 in India. During those twelve months, he had a
difficult time to get used to the new climate, new job and challenges, and
new colleagues in India, while he had made a definite plan to survey the
country of India and the coast accurately.

So, this short chapter is devoted to describe Euler’s major contributions
to ballistics. In a short period of eleven years, both Euler and Robins dra-
matically expanded the mathematical and scientific knowledge of ballistics
by constructing mathematical and empirical foundations. So, their works
represent a scientific revolution in ballistics.

13.2 Euler’s Research on Ballistics

If x and z are horizontal and vertical coordinates of a position of a particle
of mass m under the action of a constant gravitational force, —mg and
if (u,w) are the horizontal and vertical velocities of the particle with the
initial values (ug,wp), then there is no acceleration in the x direction so
that u = ug and % = UO% for any differentiable function f. The vertical
equation of motion of the particle is

Pz, d%z

dz "0 dg?
Integrating this equation twice with the initial position (z,z) = (0,0) gives
the celebrated parabolic trajectory

g 2 wo
=— | = — | . 13.2.2
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In his work on the projectile theory, Galileo admitted that his theory
without the effect of air resistance was inaccurate for high speed projec-
tiles. However, for heavy mortar shells moving with low velocities the air

=g (13.2.1)
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resistance is too small to decelerate the projectile significantly during its
short flight in the words of Galileo:

“This excessive impetus of violent shots can cause some deformation in
the path of a projectile, making the beginning of the parabola less tilted
and curved that its end. But this will prejudice our Author little or nothing
in practicable operations, his main result being the compilation of a table
of what is called the “range” of shots, containing the distances at which
balls fired at (extremely) different elevations will fall. Since such shots
are made with mortars charged with but little powder, the impetus is not
supernatural in these, and the (mortar) shots trace out their paths quite
precisely.”

Euler was familiar with this unrealistic model of the motion of a pro-
jectile due to Galileo and was aware of all assumptions made in Galileo’s
projectile theory which neglected the significant air resistance on the pro-
jectiles and the fact that the parabolic arc was an overestimation of the
range of the trajectory. So, Galileo made an appropriate comments on the
importance of air resistance in the basic problem of ballistics as follows:

“This formula for [the constant of proportionality of the resistance force]
will hold when the movement of the ball is not too fast so that the air
can quite freely fill the space which the ball has left behind. But if the
movement is so rapid that the air is unable to occupy instantaneously the
space which the ball had occupied, so that this space remains empty, at least
for an instant, then the front part of the ball is subject to the atmospheric
pressure which, not being balanced by an equal pressure behind, it is clear
that the resistance will be increased by the entire atmospheric pressure on
the anterior of the ball.”

At the same time, Euler had already made some major contributions
to mechanics and so, he was naturally interested in the area of ballistics.
In response to a royal assignment by Frederick the Great, and stimulated,
by Robins’ famous work, Euler first translated Robins’ 150-page book on
New Principles of Gunnery into German in 1745 with a large and exten-
sive mathematical commentaries that the translation was over five times
(720 pages) as long as Robins’ original book. Robins also developed exper-
imental methods to measure ballistic quantities and determined the speeds
and trajectories of musket balls with deep theoretical insights. Christian
Huygens, Newton and Johann Bernoulli made a serious attempt to study
projectile motion in a resisting medium. They were not successful to im-
prove the theory of Galileo for solving gunnery problems because the basic
differential equations of projectile motion in the atmosphere are nonlinear
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and they do not have an exact solution. Using Newton’s basic assumptions
that a force opposing the motion proportional to the square of the velocity
is to be added to the gravitational force g, Johann Bernoulli formulated the
equations of motion

i=—k (i + %)% 4, (13.2.3)
fm—g— k(24272 2, (13.2.4)

where x and z are horizontal and vertical coordinates and k is a constant.
Euler recognized that the coupled system of ordinary differential equations
is difficult to solve analytically, he developed approximation methods to
determine approximate solutions. In his translation of Robins’ book, Euler
added a large amount of mathematical commentaries in his translation of
720-page book. Some of his insightful comments led to new and modern
approach to ballistics, especially, to the study of an air flow over the bullet
and the Robins’ spin effect. Even without spin, the motion of a rigid sphere
of radius a with velocity U moving through a fluid of kinematic viscosity v
is extremely complicated and depends on the behavior of boundary layers
around the sphere.

Even in the absence of spin effect, the problem of a sphere moving in
a fluid is enormously complicated and depends on the nature of boundary
layers around the sphere. The drag force, D is usually characterized by
a drag coefficient, Cp which depends on the Reynolds number Re = @
of the flow, where for a sphere of radius r = a moving with velocity U
in a fluid (air) with viscocity v. The drag coefficient of a projectile with
projected area A = ma? in the direction of motion due to a fluid of density
p is then given by
D D
C o240 LpUma?

On the other hand, the Stokes force acting on the sphere due to the
idealized smooth flow of a viscous fluid around the sphere is given by

D = 6mpal. (13.2.6)

Substituting the value D from (13.2.6) into (13.2.5) and using the definition
of the Reynolds number yields

Cp

(13.2.5)

24
= 7

As the Reynolds number increases the flow separates from the sphere
and eddies are formed at the downstream end of the sphere. Separation

Cp (13.2.7)
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initially occurs near the stagnation point at the back of the sphere, but
moves out as the Reynolds number increases with drag coefficients Cp
attaining an approximate value one. In flow around a sphere at about
Re ~ 5 x 10° or more, the boundary layer makes a transition to turbulence
before separating from the surface. Separation is then delayed because of
the enhanced mixing effect due to turbulence, until a point is attained where
a much stronger retardation of the external flow has occurred. The wake is
much narrower and produces significantly less changes in the external flow.
There is a significant decrease in the drag coefficient, Cp as observed by
Achenback (1972) in his major article on “Experiments on the flow past
spheres at very high Reynolds numbers”. In fact, many other experiments
in the nineteenth and twentieth centuries confirmed the quantitative and
qualitative nature of the drag coefficients. For more information on drag
coeflicients, the reader is referred to a recent paper of Miller and Baily
(1979) who described a fascinating account of experimental works on the
drag coefficients during the nineteenth and twentieth centuries.

For flow around spheres, the major changes between the two flow
regimes just stated above occurs at the so-called the critical Reynolds num-
ber whose actual value (between 10° and 5 x 10°) depends upon various
factors that may tend to promote or to lessen disturbances in the associ-
ated boundary layers. Some properties of the flow characteristics and the
dramatic decrease in the drag coefficient Cp from value around 0.5 for sub-
critical Reynolds numbers to values around 0.1 for supercritical Reynolds
numbers have been extensively exploited by advanced players of ball games.

The velocity potential for irrotational flow around a sphere is often
written in terms of a spherical polar coordinates 6 so that z = rcosf
and s = rsinf. In a frame of reference in which the fluid far away from
the sphere is at rest so that the sphere is moving through the fluid in
the negative z direction, the velocity potential is obtained by subtracting
the uniform-stream velocity potential Uz or Urcos@ so that the velocity
potential is

1
p=U <1 + §a37"_3) rcosf — Urcosf (13.2.8)

1
= §Ua37“_2 cos . (13.2.9)

The velocity potential for the steady flow past a stationary sphere is given
by the first term of the right hand side of (13.2.8) and it fails to represent
accurately the steady flow. Similarly, the potential (13.2.9) fails to describe
the fluid flow associated with steady movement of the sphere in the fluid.
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But the potential represents the dipole field (13.2.9) due to a sphere set
impulsively into motion in the fluid. These conclusions forshadow some of
the more general results of Chapter 8 in Lighthill’s modern book (1986).

Euler’s extensive comments on Robins’ work revealed new insights on
supersonic flow, where the velocity of projectile is faster than the sound
velocity at which pressure waves move in the fluid, and possible develop-
ment of shock waves. In his commentaries, Euler praised Robins’ book and
also criticized some of Robins’ assumptions and approximations, pointed
out his mathematical errors and added many major areas of artillery and
ballistics not covered in Robins’ book. For example, Euler made a mathe-
matical analysis of a ballistics trajectory which incorporated the effects of
air resistance on projectiles. He also published an early study of a pres-
sure vessel and the theoretical strength of a gun barrel. He formulated
the different equations for a pressurized cylinger with unconstrained ends
where the maximum stress is the product of the internal pressure and the
ratio of the radius of the cylinder to its wall thickness. In his work, he
gave a first proof of famous d’Alembert’s paradozr in fluid mechanics that
an inviscid potential flow in three-dimensions around a rigid body moving
at a uniform velocity exerts no resistive force on the body. Mathematically,
F = —(dP/dt) = 0, where P = mv is the total momentum of the fluid and
F is the total external force transmitted to the fluid by the body. However,
the behavior of the experimentally predicted flow is quite different from
that of the potential flow. This fallacy lies not in the direct neglect of vis-
cous forces, but rather in the assumption that there is mo vorticity in the
fluid outside the body. A body moving through a real fluid has behind it a
wake containing vorticity. If the flow around a steadily moving body could
be made quite close to a potential flow, the resistive force would become
very small, but not zero.

In addition, Euler made a pioneering contributions to mathematical
analysis of supersonic air resistance, Euler developed approximate methods
to simplify his analysis of the complicated differential equations of ballistics
motion. However, his solution was correct only for projectiles moving with
low velocities. Based on the trapezoidal rule, he numerically integrated the
equations of motion representing the trajectory’s range, time, velocity, and
altitude. He then prepared ballistics tables for a projectile fired at certain
muzzle velocities and elevation angles. Subsequently, Euler’s ballistics ta-
bles were expanded to analyze more complicated ballistics trajectories for
high-speed and long-range artillery during the nineteenth and early twen-
tieth century.
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The new scientific ground opened by both Euler’s and Robins’ ballis-
tics revolution was rapidly utilized by the European military organizations.
Anne Robert Jacques Turgot (1727-1781) wrote to Louis XVI in 1774 that
“the famous Leonhard Euler, one of the greatest mathematicians of FEu-
rope, has written two works which could be very useful to the schools of
the navy and the artillery. One is a treatise on the construction and Ma-
neuver of Vessels, the other is a commentary on the principles of artillery of
Robins’.... I propose that your majesty order these to be printed.” During
the Napoleonic Wars, more Ecole Polytechnique graduates served in the
artillery than in any other branch of the French military. Napoleon Bona-
parte’s artillery professor, Jean-Louis Lombard (1723-1794), translated Eu-
ler’s and Robins’ work into French in order to prepare cadets with sufficient
knowledge and information about ballistics with special reference to major
research work in gun and projectile performance. Napoleon was very famil-
iar with Euler’s and Robins’ ballistics works, the Robin effect, the limita-
tion of Galileo’s parabolic projectile theory, and the effect of air-resistance
on projectiles, and wrote his twelve-page summary of New Principles of
Gunnery in 1788. Based on his thorough knowledge and competence in
ballistics, Napoleon wrote two memoirs on this subject. Although it is dif-
ficult to measure the actual impact of Euler and Robins on Napoleon, their
ideas and research significantly contributed to Napoleon’s great success as
the military commander in chief, especially in his utilization of artillery.
Napoleon is probably most famous for his military achievements because
of his tremendous expertise and sound knowledge of ballistics. Indeed, the
ballistics revolution made a direct impact on the combat of the French Rev-
olutionary War in the 1790’s. The French military officers utilized ballistics
tables in combat in both the French Revolutionary War and the Napoleonic
Wars.

Almost simultaneously, Great Britain was also stimulated in part by the
ballistics revolution to increase the scientific and mathematical education
of artillery officers. In 1741, the British created a new military academy
at Woolwich in Kent for the education of artillery and engineering officers
with the major focus on the combination of theory and practice. Charles
Hutton used his own textbook A course of Mathematics, for the use of the
Gentlemen Cadets in the Royal Military Academy at Woolwich to teach
sufficient mathematics to understand Euler’s and Robins’ research work in
ballistics. He also adopted Robins’ New Principles of Gunnery as a text-
book when teaching ballistics during his thirty-four year tenure at the Royal
Military Academy at Woolwich. Indeed, the entire Europe and the United



358 The Legacy of Leonhard Euler — A Tricentennial Tribute

States of America were inspired by the ballistics revolution to increase the
mathematical and scientific education and training of artillery and military
officers.

Based on Galileo’s celebrated work, both Euler and Robins made
tremendous progress on research in both mechanics and ballistics. Both ex-
perimental and theoretical works on modern ballistics with ballistics tables
of Euler and Robins provided the fundamental basis of ballistics research
in science and technology. Like any pioneering effort, their research work
was imperfect, yet it provided a fairly rigorous mathematical and scientific
foundation for ballistics.



Chapter 14

Euler and his Work on Astronomy
and Physics

“... the celebrated three-body problem, which arises from the
study of lunar motion, is still too far beyond the power of anal-
ysis for one to be able to hope to find a complete solution.”

Leonhard Fuler

“From this I draw the undeniable conclusion that one cannot
hope to solve the general case of the three-body problem while
no means is known for solving it even in the case where the
three-bodies move along one and the same line.”

Leonhard Euler

“All celebrated mathematicians now alive are his disciples:
there is no one who ... is not guided and sustained by the
genius of Euler.”

Marquis de Condorcet

14.1 Introduction

Historically, astronomy is one of the oldest subject in natural sciences. In
1543, Nicolaus Copernicus of Poland published a book describing the So-
lar System with the idea that the Earth moved around the Sun without a
proof. During the late 1500s, the Danish astronomer, Tycho Brahe success-
fully proved the theory of Copernicus and provided an accurate records of
showing the positions of the stars and planets. This was followed by the
famous discovery of German mathematical scientist, Johann Kepler who de-
scribed the observed motion of the planets in elliptical orbit. He also first

359
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formulated the three laws of planetary motion. In order to provide descrip-
tion of the Solar System consisting of the Sun and all the heavenly bodies
that revolve around it based on observations, Galileo Galilei made many
sensational discoveries in astronomy and mechanics which added support
to the Copernicus Solar System. In 1638, he published a famous book en-
titled Dialogues Concerning Two New Sciences which contained his whole
life’s work on motion, velocity, acceleration and gravity and first formu-
lated a basis for the three laws of motion which discovered later by Newton
in 1687. Indeed, Kepler’s three laws of planetary motion also formed an
indispensable basis of Newton’s discovery of universal gravitation.

During the 1660s, Sir Isaac Newton, a British mathematical scientist
and philosopher, discovered the fundamental mathematical and physical
laws of nature which were included in his greatest book of Philosophiae
Naturalis Principia Mathematica (The Mathematical Principles of Natural
Philosophy) first published in 1687. This celebrated volume as well as its
revised editions in 1713 and 1726, simply called the Principia or Principia
Mathematica, is now universally considered one of the greatest single con-
tributions ever published in the history of physical sciences. In it Newton
not only put forward a new theory of how celestial bodies move in space and
time, but also developed the complicated mathematics needed to analyze
their motion. In addition, he also formulated the laws of motion and the
law of universal gravitation according to which each body in the universe
was attracted toward every other body by a force that was stronger the
more massive the bodies and the closer they were to each other. It was
exactly the same force that caused objects to fall to the ground. According
to his law, gravity causes the Moon to move in an elliptic orbit around
the Earth and causes the Earth and the planets to follow elliptical paths
around the Sun. It was the first Newton’s book to contain a unified system
of physical principles explaining what happens on Earth and in the Uni-
verse. Newton’s Principia is divided into three volumes, the third volume
entitled On the System of the World dealt with applications of the funda-
mental principles formulated in the two proceeding ones to the systematic
study of the motion of the heavenly bodies and calculations of the orbits
of comets which subsequently verified and extended by a great British as-
tronomer, Edmond Halley. About a third of the third volume is devoted to
Newton’s theory of the Moon’s motion from physical principles. Although
Newton’s Principia was universally acclaimed, but it was severely criticized
at that time on philosophical and theological grounds. In response to these
criticisms, Newton included a short addendum — the celebrated General
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Scholium to the second edition of the Principia in 1713. So, this adden-
dum was presumably intended to explain many difficult issues in order to
prevent further criticism or controversy.

In addition, Newton’s other two great books — the Opticks or a Treatise
on the Reflections, Inflections, and Colours of Light, published in 1704 and
the Arithmetica Universalis, appeared in 1707 also brought him tremendous
reputation in the whole scientific world. With a remarkable contrast to his
Principia, this treatise retained its real scientific influence and its popular
appeal for the non-mathematical reader. In his foreword to the 1931 edition
of the Opticks, Albert Einstein (1879-1955) described that Newton had
early fascination of science with great creative ability as follows:

“... He who has time and tranquility can by reading this book live the
wonderful events which the great Newton experienced in his yound days.
Nature to him was an open book, whose letters he could read without effort
... In one person he combined the experimenter, the theorist, the mechanic
and, not least, the artist in exposition. He stands before us strong, certain
and alone; his joy in creation and his minute precision are evident in every
word and in every figure.”

In his Opticks, Newton discovered a corpuscular theory of light that
light consists of tiny particles that travel in a straight line through space.
He called the particles corpuscles. About the same time, Huygens pro-
posed that light consists of waves and suggested the wave theory to explain
the nature of light. The corpuscular and wave theories appeared to be
completely opposite and scientists continuously argued about them for the
next hundred years with no definite resolution. At the beginning of the
nineteenth century, a British physician, Thomas Young (1773-1829) ex-
perimentally discovered the interference phenomenon of light, and James
Clerk Maxwell (1831-1879) discovered a more comprehensive electromag-
netic theory describing that electromagnetic waves travel through space at
the velocity of light which is considered as an electromagnetic phenomenon.
The discoveries of Young and Maxwell for the first time triumphantly es-
tablished the wave theory of light. Consequently, the corpuscular theory
of Newton was not only considered unsuccessful, but it was believed to be
wrong throughout the nineteenth century. However, the entire story was
completely changed at the beginning of the twentieth century when a great
German scientist, Max Planck (1858-1912) discovered quanta (or photons)
and strongly pointed to a particle nature of light. In 1900, Planck proposed
a new revolutionary quantum hypothesis for the derivation of the black
body radiation that is essentially concerned with thermodynamics of the
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exchange of energy between radiation and matter. Planck postulated that
such energy is emitted only in discrete quantities of magnitude, £ = hv,
where h is the Planck constant and v is the frequency. Indeed, Planck con-
sidered the light quanta or photons as the electromagnetic waves. Based
on this revolutionary idea, Planck and Einstein independently derived the
celebrated Planck radiation formula for the energy in the form
82 v2dv
¢ lexp (7) — 1]
where ¢ is the velocity of light, T' is the temperature, and k is the Ludwig
Boltzmann (1844-1906) constant. This law has an excellent agreement with
several experimental findings, and was derived by several authors on the
assumption of radiation as electromagnetic waves. Einstein also discovered
the photoelectric effect by postulating the existence of discrete quanta (now
called photons) of light particles. All these authors were faced with some
kind of difficulties, but they have never been able to resolve them.
In 1924, S. N. Bose (1894-1974) was the first to challenge the classi-
cal statistical mechanics and totally abandoned Planck’s wave aspects of
photons. Bose treated radiation as photon particles that are indistinguish-

(14.1.1)

able identical and massless particles of energy ¢ = hr and momentum
p = (hv/c). He then gave an entirely new and novel derivation of the
Planck formula (14.1.1) for the energy based on a systematic phase-space
argument of statistical mechanics without any assumption of wave aspects
of photons. This new particle concept of radiation as well as the new deriva-
tion of the Planck law is the greatest fundamental discovery of Bose. Both
Bose and Einstein totally resuscitated Newton’s corpuscular theory of light.
By the 1925s, all physicists were prepared to give true recognition of the
corpuscular hypothesis and the wave hypothesis in a satisfactory manner as
the wave-particle duality of light. This remarkable blending of the two fun-
damental concepts is exactly what Newton proposed in his Opticks which
became not merely as a historical landmark, but for its living scientific
legend.

In summary, Newton described the basic principles of the Solar Sys-
tem and its first physical model. His work on astronomy was remarkably
influenced by Edmond Halley through their scientific correspondence and
Halley’s fateful visit to Cambridge to see Newton in April and again in Au-
gust of 1684. Halley became very famous in whole Europe for his pioneering
work in astronomy and is widely remembered for his famous discovery, uni-
versally known as Halley’s Comet which is fully accepted as a major and
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permanent member of the Solar System with a period of about 76 years.
Among other things, Halley’s more refined calculations with mathematical
tables took account of the gravitational influence of Jupiter and Saturn
and led him to predict that the motion of some comets was periodic and
that they moved in highly elongated elliptical orbits rather than parabolic
orbits. The next landmark in Newton’s academic life was Halley’s encour-
agement to publish the Principia as well as Roger Cotes’ selection for the
editorial job of the Principia. Cotes spent a considerable amount of time
and energy for his meticulous and skillful editorial work to complete the
second revised edition of the Principia with significant improvements which
was duly published in 1713. On the other hand, Halley not only recognized
great contributions of Newton to mathematical sciences and physics, but
also provided both editorial and financial help to Newton for publication
of the Principia. Indeed, Edmond Halley was a true friend and scientific
admirer of Newton and persuaded Newton to publish all of his discover-
ies. Unfortunately, Newton’s work was severely criticized by many of his
contemporary scientists including Christian Huygens and Robert Hooke.

Based on the major classical works of Kepler, Galileo, Newton and
Halley, Euler made remarkable and useful work on astronomy, mechanics,
celestial mechanics, many branches of physics, navigation and cartography.
This chapter is devoted to major contributions of Fuler to astronomy and
physics in some detail.

14.2 Euler’s Contributions to Astronomy

Euler began to study astronomial problems in his first St. Petersburg period
from 1727 to 1741. During this period, he investigated many problems of
physics and astronomy — especially celestial mechanics. He published many
papers on the theory of both perturbed and unperturbed motion of celestial
bodies. He also gave some special attention to calculations of the attraction
of an elliptical spheroid, problems of spherical astronomy and astronomical
problems related to optics, and other branches of physics. Euler made
exceptionally large contributions to these areas. Along with several other
great mathematical scientists including J. L. Lagrange, P. S. Laplace, C.
F. Gauss, A. C. Clairaut, H. Poincaré, Euler may be considered one of the
founding fathers of modern astronomy and celestial mechanics.

Euler’s research on unperturbed motion of celestial bodies, and the cal-
culation of orbits were based on the laws of Kepler and those of Newton.
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In his studies of the unperturbed motion, Fuler considered the heliocentric
motion of planets and comets, and obtained an approximate solution of the
parabolic motion of a comet. Unfortunately, several astronomers found Eu-
ler’s graphical solution unsatisfactory because Halley’s discovery of comets
with elliptic orbits led to the problem of determining orbits of comets with
no priori assumptions that they must be parabolic. However, Euler made
some significant progress to determine orbits of comets from observational
data. In 1744, he published research monograph on Theoria Motuum Plan-
etarium et Cometarum (The Theory of Motion of Comets and Planets),
with the solutions of the main problems of theoretical astronomy dealing
with the structure, nature, motion and action of comets and planets.

With regard to the theory of perturbed motion of celestial bodies, Euler
formulated the perturbation theory in general terms so that it can be used
to solve the mathematical problem of dynamic models and particular prob-
lems of theoretical astronomy. In order to determine the mass of Halley’s
Comet, Euler calculated the perturbation of the Earth’s orbit caused by
the passage of this Comet in 1759. However, his analytical method was
unable to produce accurate results that were in excellent agreement with
observational data. Since observations revealed no measurable changes in
the earth’s motion, Euler demonstrated that the masses of the comets are
less than planetary masses by several orders of magnitude.

Euler was deeply interested in both the two-body problem (The Earth
and the Moon) and the three-body problem (The Sun, Earth and Moon)
of the Solar System. He gave an extensive mathematical treatment of the
problem of improving approximations of orbits within the framework of
the two-body problem and taking perturbations into account. In his Theo-
ria motuum planetarum et cometarum published in 1744, Fuler gave a
complete mathematical treatment of the two-body problem consisting of a
planet and the Sun. Another three-body problem in the Solar System dealt
with the Sun, Jupiter and Saturn, or any general three-body problem. His
mathematical analysis of this problem revealed that neither the observed
motion of Jupiter and Saturn nor that of the Moon could be explained
completely by the Newton Inverse Square Law. It is worth noting that the
Paris Academy of Sciences selected the subject of the three-body problem
for its 1748 and 1752 Prize problems. Euler was awarded the prize in both
1748 and 1752 for his research on the irregularities of the orbits of Jupiter
and Saturn and for his major contributions to celestial mechanics. Based
on the assumption that the orbits of these planets are elliptic in nature so
that the position of each is determined by its radius vector and longitude,
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Euler derived the differential equations for these planets. He then solved
these equations using a new method of successive approximations. Since
the mutual interaction of any three-body problem perturbs their orbits sig-
nificantly, the problem became very difficult to make further progress in
celestial mechanics. Euler considered special cases of the three-body prob-
lem under suitable assumptions and approximations.

In order to study problems of celestial mechanics, Euler expressed New-
ton’s second law of motion as a system of ordinary differential equations

2

d

For a fixed body of mass M at the origin and a moving body of mass
m at (z,y, z), the components of gravitational force are given by

GMm
(Fe, Fy, Fo) = =g (2,,2), (14.2.2)

where G is the universal gravitational constant, and 7% = z? 4+ y? + r2.
This gravitational law can easily be extended to the case when both bodies
move under their mutual attraction. Based on Newton’s universal law of
gravitation, Euler first developed his first lunar theory with the aid of his
method of variation of orbital parameters. This method is fairly general
in the sense that it can not only be applied to the theory of lunar motion,
but also to the planetary motion. Euler published his first lunar theory in
his celebrated treatise ‘ Theory of lunar motion’ in 1753. He continued his
research for almost the next three decades to make significant improvement
of his first lunar theory including the lunar orbit, Moon’s position, equa-
tions for the Moon’s motion, lunar eclipses and the period of revolution of
the Moon. In 1772, Euler wrote an extensive and voluminous monograph
with a long title The theory of lunar motion, treated by means of a new
method, including astronomical tables from which the moon’s position at
any time may easily be calculated. An easy composed under the supervision
of Leonhard FEuler with incredible zeal and untiring labor by three academi-
cians J. A. FEuler, W. L. Kraft and A. J. Lezell. This expanded and most
complete second lunar theory dealt with clear and accurate exposition of a
theory of motion of celestial bodies. Based on his expanded second lunar
theory, Euler completed his new mathematical tables for calculating the
position of the Moon that was published from Berlin in 1746. His major
works dealt with the two-body problems (Moon - Earth, Earth - Sun, or
any two planets), and two three-body problems (Sun - Earth - Moon, and
Sun - Jupiter - Saturn) and the computation of the perturbations involved
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with two or more planets and with all planets combined. He often consid-
ered perturbation problems of the planets in conjunction with the Moon or
comets.

Euler made a more accurate investigation of the perturbations of the
Earth’s motion caused by the Moon in 1747, and later in the 1770s his
work was devoted to the theory of the perturbations of the earth’s motion
under the influence of Venus. Subsequently, he published papers under
the title: A new method of producing astronomical tables for the motion
of the planets in 1774 and A new method of determining the motion of
the planets in 1781. He then used his own lunar method to the study of
unperturbed planetary motion using the heliocentric coordinates X, Y of
a synodic reference frame for the position of a planet in the plane of the
orbit where the axis of abscissas passes through the mean position of the
planet. Introducing X = a(1 + z) and Y = ay, where a is the major semi
axis of the planet’s orbit, Euler derived the following results

t=eP+e2Q+e3R+---, y=ep+eg+edr+---, (14.2.3)
where e is the eccentricity of the orbit and coeflicients P, Q, R, --- and p,
q, r, --- are periodic function of the mean anomaly which are determined

from the solutions of a certain system of differential equations with constant
coefficients.

In one of his memoirs, Euler reported that “... the celebrated three-
body problem, which arises from the study of lunar motion, is still too far
beyond the power of analysis for one to be able to hope to find a com-
plete solution.” And in another place, he wrote: “From this I draw the
undeniable conclusion that one cannot hope to solve the general case of
the three-body problem while no means is known for solving it even in the
case where the three-bodies move along one and the same line.” Following
this work, Euler obtained solutions for special cases of the one-dimensional
three-body problem, now known as “collinear Lagrangian” points. In 1766,
FEuler published an article under the title “On the motion of a body at-
tached to two fixed centers of force”. In this work, Euler obtained for the
first time a general integral solution of the planar problem of two fixed cen-
ters, expressed in terms of elliptic integrals and Jacobi’s elliptic functions.
A few years later, Lagrange also found the general solution of the spatial
problem of two fixed centers, again in terms of elliptic integrals and Jacobi
elliptic functions. Obviously, the Euler-Lagrange solution of the problem of
two fixed centers is a special case of the Newton three-body problem where
a study was made of a passively gravitating body in the field created by
two fixed attractive centers.
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Both Euler and Clairaut made a serious attempt to obtain exact solu-
tions for the general three body problem and reported mathematical diffi-
culties and then suggested approximate methods. In 1747, Clairaut made
first significant progress based on the series solutions of the differential
equations. He also applied his results to the motion of Halley’s Comet
which was observed in 1531, 1607 and 1682. Clairaut calculated the per-
turbations due to the attraction of two planets, Jupiter and Saturn. It is
interesting to note that Euler became interested in the problem of the in-
tegrability of the equations arising in the three-body problems in celestial
mechanics. In 1763, Euler wrote an article under the title “Remarks on the
three-body problems” which played a fundamental role in the development
of new method of numerical integration of differential equations in theoret-
ical astronomy. In this paper, Euler discovered one of the new method of
numerical integration of differential equations of celestial mechanics. This
new method is now known as the Euler—Cole numerical method at the be-
ginning of the twentieth century as J. D. Cole rediscovered one of the most
effective difference methods of integration of differential equations that led
to the well-known method of representing solutions in the form of power
series in time.

In addition to his work in celestial mechanics, Euler made some con-
tributions to some problems in geodesy and mathematical cartography in
both his first and second St. Petersburg periods. While he was in charge
of the Geography Department of the St. Petersburg Academy, Euler was
actively involved in cartographic research in collaboration with the famous
French astronomer and geographer, J. N. Delisle, and, indeed, they were
directly responsible for the organization of the St. Petersburg Observatory
of the first ever time service in Russia. Both Euler and Delisle were en-
gaged in the development of methods of astronomical observations. Based
on their observations for a period of ten years, they computed the instant of
true noon. Both were very fascinated by sunspots and they used Delisle’s
method to compute the trajectories of the sunspots. On the other hand,
FEuler provided help to Delisle for the determination of the orbits of comets
by analytical methods. Euler’s contribution to mathematical cartography
consisted of a series of three major papers published by the St. Petersburg
Academy in 1777 including (i) On the representation of a spherical surface
on the plane, (ii) On the geographic projection of the surface of a sphere,
and (iii) On Delisle’s geographic projection and its use in the general map
of the Russian Empire. In collaboration with G. Heinsius on a research
project to prepare a map of Russia, Euler then participated directly in the
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production of the resulting Geographic Atlas of the Russian Empire pub-
lished in 1745. Indeed, three celebrated mathematical scientists including
Lambert, Euler and Lagrange laid the modern foundation of the applied
science of mathematical cartography and prepared the basic ground for
Gauss’ work on conformal mappings and differential geometry.

In his 1764 article entitled considerationes de motu corporum coelestium,
Euler was the first to study the three-body problem in astronomy under
certain assumptions and approximations and noted the intractability of the
solution of the problem which can be explained by means of his own quote:

“There is no doubt that Kepler discovered the laws according to which
celestial bodies move in their paths, and that Newton proved them—to
the greatest advantage of astronomy. But this does not mean that the
astronomical theory is at the highest level of perfection. We are able to
deal completely with Newton’s inverse-square law for two bodies. But if
a third body is involved, so that each attracts both other bodies, all the
arts of analysis are insufficient . Since the solution of the general problem
of three bodies appears to be beyond the human powers of the author, he
tried to solve the restricted problem in which the mass of the third body is
negligible compared to the other two. Possibly, starting from special cases,
the road to the solution of the general problem may be found. But even
in the case of the restricted problem the solution encounters difficulties
so great that the author has to admit to have spent much effort in vain
attempts at solution.”

On the other hand, based on the Newton’s inverse square law, three
mathematical scientists including d’Alembert, Clairaut and Euler contin-
ued to develop a fairly mathematical lunar theory under certain simplifying
assumptions and approximations. However, their works on the lunar theory
were somewhat controversial, and so, they raised questions about the valid-
ity of Newton’s inverse square law. Subsequently, the lunar theory and two
three-body problems as stated above had received considerable attention
by famous astronomers of that time.

Euler made a lot of correspondence with d’Alembert with frequent dis-
agreement on some issues. However, after d’Alembert visit to Euler in
Berlin in 1763, their relation became more cordial. There was a priority
dispute between them on the theory of the precession of the equinoxes and
nutation of the axis of the Earth.

We conclude this section by adding an interesting quotation of V. K.
Abalakin and E. A. Grebenikov from their article on Euler and the De-
velopment of Astronomy in Russia published in the MAA (Mathematical
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Association of America) Tercentenary Euler Celebration volume entitled
Euler and Modern Science (2007).

“Fuler’s correspondence with his contemporaries must be included as
part of his priceless creative heritage. In those letters one finds a wealth of
fresh scientific questions, solutions of new problems, conclusions concerning
a great variety of topics, ranging from the philosophical to the everyday,
and, finally, intelligent thoughts of a general nature. Reading these letters,
one cannot but be impressed by his philanthropic nature, and by his sin-
cere respect for every correspondent irrespective of title, authority, or social
standing. On the other hand, the manner in which he defends his scientific
views and results in the face of criticism not always just or well-founded, is
instructive and worthy of emulation. Although he always showed respect
for the point of view of an appropriate opponent, he did not permit his own
take on a subject to be undervalued or derided and refused to compromise
his principles. The single and unwavering motive behind his abundant cor-
respondence with contemporary scientists was the attainment and defense
of scientific truth. In a large number of the letters there are discussions
of astronomical topics. Many of Euler’s letters to the mathematician and
mechanician P. - L. Maupertuis, and the astronomers N. L. de la Caille,
T. Mayer, G. Heinsius, J. N. Delisle, and others, constitute by themselves
remarkable discourses on astronomy, cogently and elegantly argued and
dealing with the most topical scientific problems of the time, for instance
the problem of the earth’s shape — then a burning question in all academies
— and the related question of the interpretation of the measurements of
longitude made on several continents, as well as problems at the juncture of
astronomy and mechanics and a great many other exceedingly interesting
problems of natural science.

We would like to say in conclusion that the works of Leonhard Euler
continue in our day to serve as an almost inexhaustible source of fresh
creative ideas, so that studying them today is just as appropriate and useful
as it was during the lifetime of the great scientist.”

14.3 Euler’s Work on Physics

During his years in Berlin, Euler wrote his famous Letters to a German
Princess, Anhalt-Dessaus, niece of the King of Prussia on different sub-
jects in natural philosophy, astronomy, optics, music, acoustics, mechanics,
electricity and magnetism which was one of the most popular science books
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ever written in the history of sciences. This is an expository survey of
general physics and metaphysics. It was translated into eight different lan-
guages and became the first encyclopedia of physics in Russia.

It may not be out of place to mention Euler’s discovery of the founda-
tion of modern hydrodynamics of inviscid incompressible and compressible
fluids. In 1736, he also published his two large volumes, Mechanica sive
motus scientia analytice exposita (Mechanics or the science of motion, ex-
pounded analytically). This two-volume Mechanica dealt with a comprehen-
sive treatment of almost all aspects of mechanics including the mechanics
of rigid, flexible and elastic bodies as well as fluid mechanics, elasticity,
celestial mechanics and ballistics.

Euler’s major contributions to physics are devoted to various topics in
physical and geometrical optics, and optical instruments. During 1768-
1770, the three volumes of Euler’s Dioptrics were published. This work
dealt with his extensive research in optical sciences and optical instruments
including telescopes and microscopes.

In addition, Euler gave a comprehensive treatment of diffraction in the
atmosphere. His book Dioptrics deals with the determination of the path
of a ray of light through a system of diffraction spherical surfaces. In the
first approximation, Euler discovered the familiar formulas of elementary
optics, and in the second approximation, he took into account the spherical
and chromatic aberrations with the spherical aberration errors of the third
order. He often discussed the problems of acoustics, optics, electricity and
magnetism with the strong indication that they are closely related subjects
and therefore, they should receive simultaneous and equal treatment from
the mathematical and physical view points.

No doubt, Leonhard Euler was an universal genius and was fully
equipped with almost unlimited powers of imagination, intellectual gifts
and extraordinary memory. It is again a delight to quote Nikolai Fuss from
Eulogy in Memory of Leonhard Euler:

“Knowledge that we call erudition was not inimical to him. He had read
all the best Roman writers, knew perfectly the ancient history of mathe-
matics, held in his memory the historical events of all times and peoples,
and could without hesitation adduce by way of examples the most trifling
of historical events. He knew more about medicine, botany, and chemistry
than might be expected of someone who had not worked especially in those
sciences.”

Finally, Euler laid the mathematical foundations of potential theory,
and the theory of shipbuilding based on the principles of hydrostatics. His
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work on the theory of ships and the motion of a ship culminated in the
publication of Scientia navalis seu tractatus de construendis ac dirigendis
navibus in 1749. In 1773, he published his complete theory of shipbuild-
ing and navigation of ships which became very useful for all who practice
seafaring. His monograph entitled, ‘An investigation of the physical causes
of incoming and outgoing sea-tides’ dealt with a dynamical theory of tides
and oscillations of bodies of water in an ocean. For this original research
work, Euler shared the prize of the Paris Academy of Science in 1740 with
Daniel Bernoulli and Colin Maclaurin who had also submitted papers on
the similar subject for the prize. He was significantly influenced by the
work of great mathematical scientists who preceded him as well as by the
remarkable contributions of his contemporaries. It is hoped that enough
has been said to give some impression about the topics, variety and depth
of Euler’s mathematical and physical achievements.
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